634 research outputs found

    Sharp Total Variation Bounds for Finitely Exchangeable Arrays

    Full text link
    In this article we demonstrate the relationship between finitely exchangeable arrays and finitely exchangeable sequences. We then derive sharp bounds on the total variation distance between distributions of finitely and infinitely exchangeable arrays

    Local Exchangeability

    Full text link
    Exchangeability---in which the distribution of an infinite sequence is invariant to reorderings of its elements---implies the existence of a simple conditional independence structure that may be leveraged in the design of probabilistic models, efficient inference algorithms, and randomization-based testing procedures. In practice, however, this assumption is too strong an idealization; the distribution typically fails to be exactly invariant to permutations and de Finetti's representation theory does not apply. Thus there is the need for a distributional assumption that is both weak enough to hold in practice, and strong enough to guarantee a useful underlying representation. We introduce a relaxed notion of local exchangeability---where swapping data associated with nearby covariates causes a bounded change in the distribution. We prove that locally exchangeable processes correspond to independent observations from an underlying measure-valued stochastic process. We thereby show that de Finetti's theorem is robust to perturbation and provide further justification for the Bayesian modelling approach. Using this probabilistic result, we develop three novel statistical procedures for (1) estimating the underlying process via local empirical measures, (2) testing via local randomization, and (3) estimating the canonical premetric of local exchangeability. These three procedures extend the applicability of previous exchangeability-based methods without sacrificing rigorous statistical guarantees. The paper concludes with examples of popular statistical models that exhibit local exchangeability

    Bayesian nonparametrics for Sparse Dynamic Networks

    Full text link
    We propose a Bayesian nonparametric prior for time-varying networks. To each node of the network is associated a positive parameter, modeling the sociability of that node. Sociabilities are assumed to evolve over time, and are modeled via a dynamic point process model. The model is able to (a) capture smooth evolution of the interaction between nodes, allowing edges to appear/disappear over time (b) capture long term evolution of the sociabilities of the nodes (c) and yield sparse graphs, where the number of edges grows subquadratically with the number of nodes. The evolution of the sociabilities is described by a tractable time-varying gamma process. We provide some theoretical insights into the model and apply it to three real world datasets.Comment: 10 pages, 8 figure
    • …
    corecore