13 research outputs found

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul

    Get PDF
    In the last two decades many random graph models have been proposed to extract knowledge from networks. Most of them look for communities or, more generally, clusters of vertices with homogeneous connection profiles. While the first models focused on networks with binary edges only, extensions now allow to deal with valued networks. Recently, new models were also introduced in order to characterize connection patterns in networks through mixed memberships. This work was motivated by the need of analyzing a historical network where a partition of the vertices is given and where edges are typed. A known partition is seen as a decomposition of a network into subgraphs that we propose to model using a stochastic model with unknown latent clusters. Each subgraph has its own mixing vector and sees its vertices associated to the clusters. The vertices then connect with a probability depending on the subgraphs only, while the types of edges are assumed to be sampled from the latent clusters. A variational Bayes expectation-maximization algorithm is proposed for inference as well as a model selection criterion for the estimation of the cluster number. Experiments are carried out on simulated data to assess the approach. The proposed methodology is then applied to an ecclesiastical network in Merovingian Gaul. An R code, called Rambo, implementing the inference algorithm is available from the authors upon request.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS691 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient method for estimating the number of communities in a network

    Full text link
    While there exist a wide range of effective methods for community detection in networks, most of them require one to know in advance how many communities one is looking for. Here we present a method for estimating the number of communities in a network using a combination of Bayesian inference with a novel prior and an efficient Monte Carlo sampling scheme. We test the method extensively on both real and computer-generated networks, showing that it performs accurately and consistently, even in cases where groups are widely varying in size or structure.Comment: 13 pages, 4 figure

    Strategies for online inference of model-based clustering in large and growing networks

    Full text link
    In this paper we adapt online estimation strategies to perform model-based clustering on large networks. Our work focuses on two algorithms, the first based on the SAEM algorithm, and the second on variational methods. These two strategies are compared with existing approaches on simulated and real data. We use the method to decipher the connexion structure of the political websphere during the US political campaign in 2008. We show that our online EM-based algorithms offer a good trade-off between precision and speed, when estimating parameters for mixture distributions in the context of random graphs.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS359 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Overlapping stochastic block models with application to the French political blogosphere

    Full text link
    Complex systems in nature and in society are often represented as networks, describing the rich set of interactions between objects of interest. Many deterministic and probabilistic clustering methods have been developed to analyze such structures. Given a network, almost all of them partition the vertices into disjoint clusters, according to their connection profile. However, recent studies have shown that these techniques were too restrictive and that most of the existing networks contained overlapping clusters. To tackle this issue, we present in this paper the Overlapping Stochastic Block Model. Our approach allows the vertices to belong to multiple clusters, and, to some extent, generalizes the well-known Stochastic Block Model [Nowicki and Snijders (2001)]. We show that the model is generically identifiable within classes of equivalence and we propose an approximate inference procedure, based on global and local variational techniques. Using toy data sets as well as the French Political Blogosphere network and the transcriptional network of Saccharomyces cerevisiae, we compare our work with other approaches.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS382 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Enhanced MCL Clustering

    Get PDF
      The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph lustering techniques are very useful for detecting densely connected groups in a large graph. In this research, we introduce a clustering algorithm for graphs; this algorithm is based on Markov lustering (MCL), which is a clustering method that uses a simulation of stochastic flow. We have tuned to set the proper factors of inflation, matrix and threshold. Theoretical analysis is provided to show that the enhanced EMCL-Cluster is converging. Then the proposed method is ompared with other clustering methods

    Enhanced MCL Clustering

    Get PDF
      The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph lustering techniques are very useful for detecting densely connected groups in a large graph. In this research, we introduce a clustering algorithm for graphs; this algorithm is based on Markov lustering (MCL), which is a clustering method that uses a simulation of stochastic flow. We have tuned to set the proper factors of inflation, matrix and threshold. Theoretical analysis is provided to show that the enhanced EMCL-Cluster is converging. Then the proposed method is ompared with other clustering methods
    corecore