7,211 research outputs found

    Hyperparameter Learning via Distributional Transfer

    Full text link
    Bayesian optimisation is a popular technique for hyperparameter learning but typically requires initial exploration even in cases where similar prior tasks have been solved. We propose to transfer information across tasks using learnt representations of training datasets used in those tasks. This results in a joint Gaussian process model on hyperparameters and data representations. Representations make use of the framework of distribution embeddings into reproducing kernel Hilbert spaces. The developed method has a faster convergence compared to existing baselines, in some cases requiring only a few evaluations of the target objective

    K2-ABC: Approximate Bayesian Computation with Kernel Embeddings

    Get PDF
    Complicated generative models often result in a situation where computing the likelihood of observed data is intractable, while simulating from the conditional density given a parameter value is relatively easy. Approximate Bayesian Computation (ABC) is a paradigm that enables simulation-based posterior inference in such cases by measuring the similarity between simulated and observed data in terms of a chosen set of summary statistics. However, there is no general rule to construct sufficient summary statistics for complex models. Insufficient summary statistics will "leak" information, which leads to ABC algorithms yielding samples from an incorrect (partial) posterior. In this paper, we propose a fully nonparametric ABC paradigm which circumvents the need for manually selecting summary statistics. Our approach, K2-ABC, uses maximum mean discrepancy (MMD) as a dissimilarity measure between the distributions over observed and simulated data. MMD is easily estimated as the squared difference between their empirical kernel embeddings. Experiments on a simulated scenario and a real-world biological problem illustrate the effectiveness of the proposed algorithm
    • …
    corecore