6 research outputs found

    Gaussian-Process-based Robot Learning from Demonstration

    Full text link
    Endowed with higher levels of autonomy, robots are required to perform increasingly complex manipulation tasks. Learning from demonstration is arising as a promising paradigm for transferring skills to robots. It allows to implicitly learn task constraints from observing the motion executed by a human teacher, which can enable adaptive behavior. We present a novel Gaussian-Process-based learning from demonstration approach. This probabilistic representation allows to generalize over multiple demonstrations, and encode variability along the different phases of the task. In this paper, we address how Gaussian Processes can be used to effectively learn a policy from trajectories in task space. We also present a method to efficiently adapt the policy to fulfill new requirements, and to modulate the robot behavior as a function of task variability. This approach is illustrated through a real-world application using the TIAGo robot.Comment: 8 pages, 10 figure

    Active Improvement of Control Policies with Bayesian Gaussian Mixture Model

    Full text link
    Learning from demonstration (LfD) is an intuitive framework allowing non-expert users to easily (re-)program robots. However, the quality and quantity of demonstrations have a great influence on the generalization performances of LfD approaches. In this paper, we introduce a novel active learning framework in order to improve the generalization capabilities of control policies. The proposed approach is based on the epistemic uncertainties of Bayesian Gaussian mixture models (BGMMs). We determine the new query point location by optimizing a closed-form information-density cost based on the quadratic R\'enyi entropy. Furthermore, to better represent uncertain regions and to avoid local optima problem, we propose to approximate the active learning cost with a Gaussian mixture model (GMM). We demonstrate our active learning framework in the context of a reaching task in a cluttered environment with an illustrative toy example and a real experiment with a Panda robot.Comment: Accepted for publication in IROS'2

    ILoSA: Interactive Learning of Stiffness and Attractors

    Full text link
    Teaching robots how to apply forces according to our preferences is still an open challenge that has to be tackled from multiple engineering perspectives. This paper studies how to learn variable impedance policies where both the Cartesian stiffness and the attractor can be learned from human demonstrations and corrections with a user-friendly interface. The presented framework, named ILoSA, uses Gaussian Processes for policy learning, identifying regions of uncertainty and allowing interactive corrections, stiffness modulation and active disturbance rejection. The experimental evaluation of the framework is carried out on a Franka-Emika Panda in three separate cases with unique force interaction properties: 1) pulling a plug wherein a sudden force discontinuity occurs upon successful removal of the plug, 2) pushing a box where a sustained force is required to keep the robot in motion, and 3) wiping a whiteboard in which the force is applied perpendicular to the direction of movement

    Generative adversarial training of product of policies for robust and adaptive movement primitives

    Full text link
    In learning from demonstrations, many generative models of trajectories make simplifying assumptions of independence. Correctness is sacrificed in the name of tractability and speed of the learning phase. The ignored dependencies, which often are the kinematic and dynamic constraints of the system, are then only restored when synthesizing the motion, which introduces possibly heavy distortions. In this work, we propose to use those approximate trajectory distributions as close-to-optimal discriminators in the popular generative adversarial framework to stabilize and accelerate the learning procedure. The two problems of adaptability and robustness are addressed with our method. In order to adapt the motions to varying contexts, we propose to use a product of Gaussian policies defined in several parametrized task spaces. Robustness to perturbations and varying dynamics is ensured with the use of stochastic gradient descent and ensemble methods to learn the stochastic dynamics. Two experiments are performed on a 7-DoF manipulator to validate the approach.Comment: Source code can be found here : https://github.com/emmanuelpignat/tf_robot_learnin

    Topology Recoverability Prediction for Ad-Hoc Robot Networks: A Data-Driven Fault-Tolerant Approach

    Full text link
    Faults occurring in ad-hoc robot networks may fatally perturb their topologies leading to disconnection of subsets of those networks. Optimal topology synthesis is generally resource-intensive and time-consuming to be done in real time for large ad-hoc robot networks. One should only perform topology re-computations if the probability of topology recoverability after the occurrence of any fault surpasses that of its irrecoverability. We formulate this problem as a binary classification problem. Then, we develop a two-pathway data-driven model based on Bayesian Gaussian mixture models that predicts the solution to a typical problem by two different pre-fault and post-fault prediction pathways. The results, obtained by the integration of the predictions of those pathways, clearly indicate the success of our model in solving the topology (ir)recoverability prediction problem compared to the best of current strategies found in the literature

    Bayesian Gaussian Mixture Model for Robotic Policy Imitation

    No full text
    corecore