249 research outputs found

    A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images

    Full text link
    Template estimation plays a crucial role in computational anatomy since it provides reference frames for performing statistical analysis of the underlying anatomical population variability. While building models for template estimation, variability in sites and image acquisition protocols need to be accounted for. To account for such variability, we propose a generative template estimation model that makes simultaneous inference of both bias fields in individual images, deformations for image registration, and variance hyperparameters. In contrast, existing maximum a posterori based methods need to rely on either bias-invariant similarity measures or robust image normalization. Results on synthetic and real brain MRI images demonstrate the capability of the model to capture heterogeneity in intensities and provide a reliable template estimation from registration

    Doctor of Philosophy in Computing

    Get PDF
    dissertationAn important area of medical imaging research is studying anatomical diffeomorphic shape changes and detecting their relationship to disease processes. For example, neurodegenerative disorders change the shape of the brain, thus identifying differences between the healthy control subjects and patients affected by these diseases can help with understanding the disease processes. Previous research proposed a variety of mathematical approaches for statistical analysis of geometrical brain structure in three-dimensional (3D) medical imaging, including atlas building, brain variability quantification, regression, etc. The critical component in these statistical models is that the geometrical structure is represented by transformations rather than the actual image data. Despite the fact that such statistical models effectively provide a way for analyzing shape variation, none of them have a truly probabilistic interpretation. This dissertation contributes a novel Bayesian framework of statistical shape analysis for generic manifold data and its application to shape variability and brain magnetic resonance imaging (MRI). After we carefully define the distributions on manifolds, we then build Bayesian models for analyzing the intrinsic variability of manifold data, involving the mean point, principal modes, and parameter estimation. Because there is no closed-form solution for Bayesian inference of these models on manifolds, we develop a Markov Chain Monte Carlo method to sample the hidden variables from the distribution. The main advantages of these Bayesian approaches are that they provide parameter estimation and automatic dimensionality reduction for analyzing generic manifold-valued data, such as diffeomorphisms. Modeling the mean point of a group of images in a Bayesian manner allows for learning the regularity parameter from data directly rather than having to set it manually, which eliminates the effort of cross validation for parameter selection. In population studies, our Bayesian model of principal modes analysis (1) automatically extracts a low-dimensional, second-order statistics of manifold data variability and (2) gives a better geometric data fit than nonprobabilistic models. To make this Bayesian framework computationally more efficient for high-dimensional diffeomorphisms, this dissertation presents an algorithm, FLASH (finite-dimensional Lie algebras for shooting), that hugely speeds up the diffeomorphic image registration. Instead of formulating diffeomorphisms in a continuous variational problem, Flash defines a completely new discrete reparameterization of diffeomorphisms in a low-dimensional bandlimited velocity space, which results in the Bayesian inference via sampling on the space of diffeomorphisms being more feasible in time. Our entire Bayesian framework in this dissertation is used for statistical analysis of shape data and brain MRIs. It has the potential to improve hypothesis testing, classification, and mixture models

    Quicksilver: Fast Predictive Image Registration - a Deep Learning Approach

    Get PDF
    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi- modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.Comment: Add new discussion

    Most Likely Separation of Intensity and Warping Effects in Image Registration

    Full text link
    This paper introduces a class of mixed-effects models for joint modeling of spatially correlated intensity variation and warping variation in 2D images. Spatially correlated intensity variation and warp variation are modeled as random effects, resulting in a nonlinear mixed-effects model that enables simultaneous estimation of template and model parameters by optimization of the likelihood function. We propose an algorithm for fitting the model which alternates estimation of variance parameters and image registration. This approach avoids the potential estimation bias in the template estimate that arises when treating registration as a preprocessing step. We apply the model to datasets of facial images and 2D brain magnetic resonance images to illustrate the simultaneous estimation and prediction of intensity and warp effects
    corecore