5,987 research outputs found

    Neural Models for Documents with Metadata

    Full text link
    Most real-world document collections involve various types of metadata, such as author, source, and date, and yet the most commonly-used approaches to modeling text corpora ignore this information. While specialized models have been developed for particular applications, few are widely used in practice, as customization typically requires derivation of a custom inference algorithm. In this paper, we build on recent advances in variational inference methods and propose a general neural framework, based on topic models, to enable flexible incorporation of metadata and allow for rapid exploration of alternative models. Our approach achieves strong performance, with a manageable tradeoff between perplexity, coherence, and sparsity. Finally, we demonstrate the potential of our framework through an exploration of a corpus of articles about US immigration.Comment: 13 pages, 3 figures, 6 tables; updating to version published at ACL 201

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic

    Interdependent Gibbs Samplers

    Full text link
    Gibbs sampling, as a model learning method, is known to produce the most accurate results available in a variety of domains, and is a de facto standard in these domains. Yet, it is also well known that Gibbs random walks usually have bottlenecks, sometimes termed "local maxima", and thus samplers often return suboptimal solutions. In this paper we introduce a variation of the Gibbs sampler which yields high likelihood solutions significantly more often than the regular Gibbs sampler. Specifically, we show that combining multiple samplers, with certain dependence (coupling) between them, results in higher likelihood solutions. This side-steps the well known issue of identifiability, which has been the obstacle to combining samplers in previous work. We evaluate the approach on a Latent Dirichlet Allocation model, and also on HMM's, where precise computation of likelihoods and comparisons to the standard EM algorithm are possible.Comment: Added a reference to a previous work which considered a very similar algorith

    Prediction-Constrained Training for Semi-Supervised Mixture and Topic Models

    Full text link
    Supervisory signals have the potential to make low-dimensional data representations, like those learned by mixture and topic models, more interpretable and useful. We propose a framework for training latent variable models that explicitly balances two goals: recovery of faithful generative explanations of high-dimensional data, and accurate prediction of associated semantic labels. Existing approaches fail to achieve these goals due to an incomplete treatment of a fundamental asymmetry: the intended application is always predicting labels from data, not data from labels. Our prediction-constrained objective for training generative models coherently integrates loss-based supervisory signals while enabling effective semi-supervised learning from partially labeled data. We derive learning algorithms for semi-supervised mixture and topic models using stochastic gradient descent with automatic differentiation. We demonstrate improved prediction quality compared to several previous supervised topic models, achieving predictions competitive with high-dimensional logistic regression on text sentiment analysis and electronic health records tasks while simultaneously learning interpretable topics

    Prediction-Constrained Topic Models for Antidepressant Recommendation

    Full text link
    Supervisory signals can help topic models discover low-dimensional data representations that are more interpretable for clinical tasks. We propose a framework for training supervised latent Dirichlet allocation that balances two goals: faithful generative explanations of high-dimensional data and accurate prediction of associated class labels. Existing approaches fail to balance these goals by not properly handling a fundamental asymmetry: the intended task is always predicting labels from data, not data from labels. Our new prediction-constrained objective trains models that predict labels from heldout data well while also producing good generative likelihoods and interpretable topic-word parameters. In a case study on predicting depression medications from electronic health records, we demonstrate improved recommendations compared to previous supervised topic models and high- dimensional logistic regression from words alone.Comment: Accepted poster at NIPS 2017 Workshop on Machine Learning for Health (https://ml4health.github.io/2017/

    A Tutorial on Deep Latent Variable Models of Natural Language

    Full text link
    There has been much recent, exciting work on combining the complementary strengths of latent variable models and deep learning. Latent variable modeling makes it easy to explicitly specify model constraints through conditional independence properties, while deep learning makes it possible to parameterize these conditional likelihoods with powerful function approximators. While these "deep latent variable" models provide a rich, flexible framework for modeling many real-world phenomena, difficulties exist: deep parameterizations of conditional likelihoods usually make posterior inference intractable, and latent variable objectives often complicate backpropagation by introducing points of non-differentiability. This tutorial explores these issues in depth through the lens of variational inference.Comment: EMNLP 2018 Tutoria

    Discovering Discrete Latent Topics with Neural Variational Inference

    Full text link
    Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.Comment: ICML 201

    Familia: A Configurable Topic Modeling Framework for Industrial Text Engineering

    Full text link
    In the last decade, a variety of topic models have been proposed for text engineering. However, except Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA), most of existing topic models are seldom applied or considered in industrial scenarios. This phenomenon is caused by the fact that there are very few convenient tools to support these topic models so far. Intimidated by the demanding expertise and labor of designing and implementing parameter inference algorithms, software engineers are prone to simply resort to PLSA/LDA, without considering whether it is proper for their problem at hand or not. In this paper, we propose a configurable topic modeling framework named Familia, in order to bridge the huge gap between academic research fruits and current industrial practice. Familia supports an important line of topic models that are widely applicable in text engineering scenarios. In order to relieve burdens of software engineers without knowledge of Bayesian networks, Familia is able to conduct automatic parameter inference for a variety of topic models. Simply through changing the data organization of Familia, software engineers are able to easily explore a broad spectrum of existing topic models or even design their own topic models, and find the one that best suits the problem at hand. With its superior extendability, Familia has a novel sampling mechanism that strikes balance between effectiveness and efficiency of parameter inference. Furthermore, Familia is essentially a big topic modeling framework that supports parallel parameter inference and distributed parameter storage. The utilities and necessity of Familia are demonstrated in real-life industrial applications. Familia would significantly enlarge software engineers' arsenal of topic models and pave the way for utilizing highly customized topic models in real-life problems.Comment: 21 pages, 15 figure

    Discovering shared and individual latent structure in multiple time series

    Full text link
    This paper proposes a nonparametric Bayesian method for exploratory data analysis and feature construction in continuous time series. Our method focuses on understanding shared features in a set of time series that exhibit significant individual variability. Our method builds on the framework of latent Diricihlet allocation (LDA) and its extension to hierarchical Dirichlet processes, which allows us to characterize each series as switching between latent ``topics'', where each topic is characterized as a distribution over ``words'' that specify the series dynamics. However, unlike standard applications of LDA, we discover the words as we learn the model. We apply this model to the task of tracking the physiological signals of premature infants; our model obtains clinically significant insights as well as useful features for supervised learning tasks.Comment: Additional supplementary section in tex fil

    Concept Modeling with Superwords

    Full text link
    In information retrieval, a fundamental goal is to transform a document into concepts that are representative of its content. The term "representative" is in itself challenging to define, and various tasks require different granularities of concepts. In this paper, we aim to model concepts that are sparse over the vocabulary, and that flexibly adapt their content based on other relevant semantic information such as textual structure or associated image features. We explore a Bayesian nonparametric model based on nested beta processes that allows for inferring an unknown number of strictly sparse concepts. The resulting model provides an inherently different representation of concepts than a standard LDA (or HDP) based topic model, and allows for direct incorporation of semantic features. We demonstrate the utility of this representation on multilingual blog data and the Congressional Record
    • …
    corecore