42 research outputs found

    Context-Aware Generative Models for Prediction of Aircraft Ground Tracks

    Full text link
    Trajectory prediction (TP) plays an important role in supporting the decision-making of Air Traffic Controllers (ATCOs). Traditional TP methods are deterministic and physics-based, with parameters that are calibrated using aircraft surveillance data harvested across the world. These models are, therefore, agnostic to the intentions of the pilots and ATCOs, which can have a significant effect on the observed trajectory, particularly in the lateral plane. This work proposes a generative method for lateral TP, using probabilistic machine learning to model the effect of the epistemic uncertainty arising from the unknown effect of pilot behaviour and ATCO intentions. The models are trained to be specific to a particular sector, allowing local procedures such as coordinated entry and exit points to be modelled. A dataset comprising a week's worth of aircraft surveillance data, passing through a busy sector of the United Kingdom's upper airspace, was used to train and test the models. Specifically, a piecewise linear model was used as a functional, low-dimensional representation of the ground tracks, with its control points determined by a generative model conditioned on partial context. It was found that, of the investigated models, a Bayesian Neural Network using the Laplace approximation was able to generate the most plausible trajectories in order to emulate the flow of traffic through the sector

    DE-TGN: Uncertainty-Aware Human Motion Forecasting using Deep Ensembles

    Full text link
    Ensuring the safety of human workers in a collaborative environment with robots is of utmost importance. Although accurate pose prediction models can help prevent collisions between human workers and robots, they are still susceptible to critical errors. In this study, we propose a novel approach called deep ensembles of temporal graph neural networks (DE-TGN) that not only accurately forecast human motion but also provide a measure of prediction uncertainty. By leveraging deep ensembles and employing stochastic Monte-Carlo dropout sampling, we construct a volumetric field representing a range of potential future human poses based on covariance ellipsoids. To validate our framework, we conducted experiments using three motion capture datasets including Human3.6M, and two human-robot interaction scenarios, achieving state-of-the-art prediction error. Moreover, we discovered that deep ensembles not only enable us to quantify uncertainty but also improve the accuracy of our predictions

    FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

    Full text link
    The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it and comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.Comment: accepted at NeurIPS 202

    Sparse Bayesian neural networks for regression: Tackling overfitting and computational challenges in uncertainty quantification

    Full text link
    Neural networks (NNs) are primarily developed within the frequentist statistical framework. Nevertheless, frequentist NNs lack the capability to provide uncertainties in the predictions, and hence their robustness can not be adequately assessed. Conversely, the Bayesian neural networks (BNNs) naturally offer predictive uncertainty by applying Bayes' theorem. However, their computational requirements pose significant challenges. Moreover, both frequentist NNs and BNNs suffer from overfitting issues when dealing with noisy and sparse data, which render their predictions unwieldy away from the available data space. To address both these problems simultaneously, we leverage insights from a hierarchical setting in which the parameter priors are conditional on hyperparameters to construct a BNN by applying a semi-analytical framework known as nonlinear sparse Bayesian learning (NSBL). We call our network sparse Bayesian neural network (SBNN) which aims to address the practical and computational issues associated with BNNs. Simultaneously, imposing a sparsity-inducing prior encourages the automatic pruning of redundant parameters based on the automatic relevance determination (ARD) concept. This process involves removing redundant parameters by optimally selecting the precision of the parameters prior probability density functions (pdfs), resulting in a tractable treatment for overfitting. To demonstrate the benefits of the SBNN algorithm, the study presents an illustrative regression problem and compares the results of a BNN using standard Bayesian inference, hierarchical Bayesian inference, and a BNN equipped with the proposed algorithm. Subsequently, we demonstrate the importance of considering the full parameter posterior by comparing the results with those obtained using the Laplace approximation with and without NSBL
    corecore