7 research outputs found

    Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation

    Full text link
    The counterfactual distribution models the effect of the treatment in the untreated group. While most of the work focuses on the expected values of the treatment effect, one may be interested in the whole counterfactual distribution or other quantities associated to it. Building on the framework of Bayesian conditional mean embeddings, we propose a Bayesian approach for modeling the counterfactual distribution, which leads to quantifying the epistemic uncertainty about the distribution. The framework naturally extends to the setting where one observes multiple treatment effects (e.g. an intermediate effect after an interim period, and an ultimate treatment effect which is of main interest) and allows for additionally modelling uncertainty about the relationship of these effects. For such goal, we present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect, when only noisy samples of the dependence between intermediate and ultimate effects are provided. These methods differ on the source of uncertainty considered and allow for combining two sources of data. Moreover, we generalize these ideas to the off-policy evaluation framework, which can be seen as an extension of the counterfactual estimation problem. We empirically explore the calibration of the algorithms in two different experimental settings which require data fusion, and illustrate the value of considering the uncertainty stemming from the two sources of data

    Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models

    Full text link
    We present a novel approach for explaining Gaussian processes (GPs) that can utilize the full analytical covariance structure present in GPs. Our method is based on the popular solution concept of Shapley values extended to stochastic cooperative games, resulting in explanations that are random variables. The GP explanations generated using our approach satisfy similar favorable axioms to standard Shapley values and possess a tractable covariance function across features and data observations. This covariance allows for quantifying explanation uncertainties and studying the statistical dependencies between explanations. We further extend our framework to the problem of predictive explanation, and propose a Shapley prior over the explanation function to predict Shapley values for new data based on previously computed ones. Our extensive illustrations demonstrate the effectiveness of the proposed approach.Comment: 26 pages, 6 figure

    Dual Instrumental Method for Confounded Kernelized Bandits

    Full text link
    The contextual bandit problem is a theoretically justified framework with wide applications in various fields. While the previous study on this problem usually requires independence between noise and contexts, our work considers a more sensible setting where the noise becomes a latent confounder that affects both contexts and rewards. Such a confounded setting is more realistic and could expand to a broader range of applications. However, the unresolved confounder will cause a bias in reward function estimation and thus lead to a large regret. To deal with the challenges brought by the confounder, we apply the dual instrumental variable regression, which can correctly identify the true reward function. We prove the convergence rate of this method is near-optimal in two types of widely used reproducing kernel Hilbert spaces. Therefore, we can design computationally efficient and regret-optimal algorithms based on the theoretical guarantees for confounded bandit problems. The numerical results illustrate the efficacy of our proposed algorithms in the confounded bandit setting

    Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference

    Get PDF
    This thesis presents the narrative of a particular journey towards discovering and developing Bayesian perspectives on conditional kernel mean embeddings. It is motivated by the desire and need to learn flexible and richer representations of conditional distributions for probabilistic inference in various contexts. While conditional kernel mean embeddings are able to achieve such representations, it is unclear how their hyperparameters can be learned for probabilistic inference in various settings. These hyperparameters govern the space of possible representations, and critically influence the degree of inference accuracy. At its core, this thesis argues for the notion that Bayesian perspectives lead to principled ways for formulating frameworks that provides a holistic treatment to model, learning, and inference. The story begins by emulating required properties of Bayesian frameworks via learning theoretic bounds. This is carried through the lens of a probabilistic multiclass setting, resulting in the multiclass conditional embedding framework. Through establishing convergence to multiclass probabilities and deriving learning theoretic and Rademacher complexity bounds, the framework arrives at an expected risk bound whose realizations exhibits desirable properties for hyperparameter learning such as the ever-crucial balance between data-fit error and model complexity, emulating marginal likelihoods. The probabilistic nature of this bound enable batch learning for scalability, and the generality of the model allow for various model architectures to be used and learned end-to-end. The narrative unfolds into forming approximate Bayesian inference frameworks directly for the likelihood-free Bayesian inference problem, leading to the kernel embedding likelihood-free inference framework. The core motivator centers around the natural suitability of conditional kernel mean embeddings to forming surrogate probabilistic models. By leveraging the likelihood-free Bayesian inference problem structure, surrogate models for both hyperparameter learning and posterior inference are developed. Finally, the journey concludes with a Bayesian regression framework that aligns the learning and inference to both the problem and the model. This begins by a careful formulation of the conditional mean and the novel deconditional mean problem, thereby revealing the novel deconditional mean embeddings as core elements of the wider kernel mean embedding framework. They can further be established as a nonparametric Bayes' rule with applications towards Bayesian inference. Crucially, by introducing the task transformed regression problem, they can be extended to the novel task transformed Gaussian processes as their Bayesian form, whose marginal likelihood can be used to learn hyperparameters in various forms and contexts. These perspectives and frameworks developed in this thesis shed light into creative ways conditional kernel mean embeddings can be learned and applied in existing problem domains, and further inspire elegant solutions in novel problem settings
    corecore