942,235 research outputs found
PAC-Bayesian Theory Meets Bayesian Inference
We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the
Bayesian marginal likelihood. That is, for the negative log-likelihood loss
function, we show that the minimization of PAC-Bayesian generalization risk
bounds maximizes the Bayesian marginal likelihood. This provides an alternative
explanation to the Bayesian Occam's razor criteria, under the assumption that
the data is generated by an i.i.d distribution. Moreover, as the negative
log-likelihood is an unbounded loss function, we motivate and propose a
PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that
our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015
(http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference
A Bayesian approach to constrained single- and multi-objective optimization
This article addresses the problem of derivative-free (single- or
multi-objective) optimization subject to multiple inequality constraints. Both
the objective and constraint functions are assumed to be smooth, non-linear and
expensive to evaluate. As a consequence, the number of evaluations that can be
used to carry out the optimization is very limited, as in complex industrial
design optimization problems. The method we propose to overcome this difficulty
has its roots in both the Bayesian and the multi-objective optimization
literatures. More specifically, an extended domination rule is used to handle
objectives and constraints in a unified way, and a corresponding expected
hyper-volume improvement sampling criterion is proposed. This new criterion is
naturally adapted to the search of a feasible point when none is available, and
reduces to existing Bayesian sampling criteria---the classical Expected
Improvement (EI) criterion and some of its constrained/multi-objective
extensions---as soon as at least one feasible point is available. The
calculation and optimization of the criterion are performed using Sequential
Monte Carlo techniques. In particular, an algorithm similar to the subset
simulation method, which is well known in the field of structural reliability,
is used to estimate the criterion. The method, which we call BMOO (for Bayesian
Multi-Objective Optimization), is compared to state-of-the-art algorithms for
single- and multi-objective constrained optimization
On computational tools for Bayesian data analysis
While Robert and Rousseau (2010) addressed the foundational aspects of
Bayesian analysis, the current chapter details its practical aspects through a
review of the computational methods available for approximating Bayesian
procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte
Carlo methods and more recently Approximate Bayesian Computation techniques
have considerably increased the potential for Bayesian applications and they
have also opened new avenues for Bayesian inference, first and foremost
Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert
Elicitation" edited by Klaus Bocker, 23 pages, 9 figure
Bayesian Reconstruction of Missing Observations
We focus on an interpolation method referred to Bayesian reconstruction in
this paper. Whereas in standard interpolation methods missing data are
interpolated deterministically, in Bayesian reconstruction, missing data are
interpolated probabilistically using a Bayesian treatment. In this paper, we
address the framework of Bayesian reconstruction and its application to the
traffic data reconstruction problem in the field of traffic engineering. In the
latter part of this paper, we describe the evaluation of the statistical
performance of our Bayesian traffic reconstruction model using a statistical
mechanical approach and clarify its statistical behavior
Perfect Regular Equilibrium
We propose a revised version of the perfect Bayesian equilibrium in general multi-period games with observed actions. In finite games, perfect Bayesian equilibria are weakly consistent and subgame perfect Nash equilibria. In general games that allow a continuum of types and strategies, however, perfect Bayesian equilibria might not satisfy these criteria of rational solution concepts. To solve this problem, we revise the definition of the perfect Bayesian equilibrium by replacing Bayes' rule with a regular conditional probability. We call this revised solution concept a perfect regular equilibrium. Perfect regular equilibria are always weakly consistent and subgame perfect Nash equilibria in general games. In addition, perfect regular equilibria are equivalent to simplified perfect Bayesian equilibria in finite games. Therefore, the perfect regular equilibrium is an extended and simple version of the perfect Bayesian equilibrium in general multi-period games with observed actions
- …
