54 research outputs found

    Cascade Model-based Propensity Estimation for Counterfactual Learning to Rank

    Get PDF
    Unbiased CLTR requires click propensities to compensate for the difference between user clicks and true relevance of search results via IPS. Current propensity estimation methods assume that user click behavior follows the PBM and estimate click propensities based on this assumption. However, in reality, user clicks often follow the CM, where users scan search results from top to bottom and where each next click depends on the previous one. In this cascade scenario, PBM-based estimates of propensities are not accurate, which, in turn, hurts CLTR performance. In this paper, we propose a propensity estimation method for the cascade scenario, called CM-IPS. We show that CM-IPS keeps CLTR performance close to the full-information performance in case the user clicks follow the CM, while PBM-based CLTR has a significant gap towards the full-information. The opposite is true if the user clicks follow PBM instead of the CM. Finally, we suggest a way to select between CM- and PBM-based propensity estimation methods based on historical user clicks.Comment: 4 pages, 2 figures, 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20

    Double Clipping: Less-Biased Variance Reduction in Off-Policy Evaluation

    Full text link
    "Clipping" (a.k.a. importance weight truncation) is a widely used variance-reduction technique for counterfactual off-policy estimators. Like other variance-reduction techniques, clipping reduces variance at the cost of increased bias. However, unlike other techniques, the bias introduced by clipping is always a downward bias (assuming non-negative rewards), yielding a lower bound on the true expected reward. In this work we propose a simple extension, called double clipping\textit{double clipping}, which aims to compensate this downward bias and thus reduce the overall bias, while maintaining the variance reduction properties of the original estimator.Comment: Presented at CONSEQUENCES '23 workshop at RecSys 2023 conference in Singapor

    Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in Statistical Machine Translation

    Full text link
    The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT output space seemingly contradicts the theoretical requirements for counterfactual learning. We show that counterfactual learning from deterministic bandit logs is possible nevertheless by smoothing out deterministic components in learning. This can be achieved by additive and multiplicative control variates that avoid degenerate behavior in empirical risk minimization. Our simulation experiments show improvements of up to 2 BLEU points by counterfactual learning from deterministic bandit feedback.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017, Copenhagen, Denmar
    • …
    corecore