488,437 research outputs found

    A comparative study of different strategies of batch effect removal in microarray data: a case study of three datasets

    Get PDF
    Batch effects refer to the systematic non-biological variability that is introduced by experimental design and sample processing in microarray experiments. It is a common issue in microarray data and could introduce bias into the analysis, if ignored. Many batch effect removal methods have been developed. Previous comparative work has been focused on their effectiveness of batch effects removal and impact on downstream classification analysis. The most common type of analysis for microarray data is differential expression (DE) analysis, yet no study has examined the impact of these methods on downstream DE analysis, which identifies markers that are significantly associated with the outcome of interest. In this project, we investigated the performance of five popular batch effect removal methods, mean-centering, ComBat_p, ComBat_n, SVA, and ratio based methods, on batch effects reduction and their impact on DE analysis using three experimental datasets with different sources of batch effects. We found that the performance of these methods is data-dependent: simple mean-centering method performed reasonably well in all three datasets, but the more complicated algorithms such as ComBat method’s performance could be unstable for certain dataset and should be applied with caution. Given a new dataset, we recommend either using the mean-centering method or carefully investigating a few different batch removal methods and choosing the one that is the best for the data, if possible. This study has important public health significance because better handling of batch effect in microarray data can reduce biased results and lead to improved biomarker identification

    Enabling a High Throughput Real Time Data Pipeline for a Large Radio Telescope Array with GPUs

    Get PDF
    The Murchison Widefield Array (MWA) is a next-generation radio telescope currently under construction in the remote Western Australia Outback. Raw data will be generated continuously at 5GiB/s, grouped into 8s cadences. This high throughput motivates the development of on-site, real time processing and reduction in preference to archiving, transport and off-line processing. Each batch of 8s data must be completely reduced before the next batch arrives. Maintaining real time operation will require a sustained performance of around 2.5TFLOP/s (including convolutions, FFTs, interpolations and matrix multiplications). We describe a scalable heterogeneous computing pipeline implementation, exploiting both the high computing density and FLOP-per-Watt ratio of modern GPUs. The architecture is highly parallel within and across nodes, with all major processing elements performed by GPUs. Necessary scatter-gather operations along the pipeline are loosely synchronized between the nodes hosting the GPUs. The MWA will be a frontier scientific instrument and a pathfinder for planned peta- and exascale facilities.Comment: Version accepted by Comp. Phys. Com

    Detailed design specification for the ALT Shuttle Information Extraction Subsystem (SIES)

    Get PDF
    The approach and landing test (ALT) shuttle information extraction system (SIES) is described in terms of general requirements and system characteristics output products and processing options, output products and data sources, and system data flow. The ALT SIES is a data reduction system designed to satisfy certain data processing requirements for the ALT phase of the space shuttle program. The specific ALT SIES data processing requirements are stated in the data reduction complex approach and landing test data processing requirements. In general, ALT SIES must produce time correlated data products as a result of standardized data reduction or special purpose analytical processes. The main characteristics of ALT SIES are: (1) the system operates in a batch (non-interactive) mode; (2) the processing is table driven; (3) it is data base oriented; (4) it has simple operating procedures; and (5) it requires a minimum of run time information
    corecore