23 research outputs found

    Characteristic of partition-circuit matroid through approximation number

    Full text link
    Rough set theory is a useful tool to deal with uncertain, granular and incomplete knowledge in information systems. And it is based on equivalence relations or partitions. Matroid theory is a structure that generalizes linear independence in vector spaces, and has a variety of applications in many fields. In this paper, we propose a new type of matroids, namely, partition-circuit matroids, which are induced by partitions. Firstly, a partition satisfies circuit axioms in matroid theory, then it can induce a matroid which is called a partition-circuit matroid. A partition and an equivalence relation on the same universe are one-to-one corresponding, then some characteristics of partition-circuit matroids are studied through rough sets. Secondly, similar to the upper approximation number which is proposed by Wang and Zhu, we define the lower approximation number. Some characteristics of partition-circuit matroids and the dual matroids of them are investigated through the lower approximation number and the upper approximation number.Comment: 12 page

    Knowledge reduction of dynamic covering decision information systems with varying attribute values

    Full text link
    Knowledge reduction of dynamic covering information systems involves with the time in practical situations. In this paper, we provide incremental approaches to computing the type-1 and type-2 characteristic matrices of dynamic coverings because of varying attribute values. Then we present incremental algorithms of constructing the second and sixth approximations of sets by using characteristic matrices. We employ experimental results to illustrate that the incremental approaches are effective to calculate approximations of sets in dynamic covering information systems. Finally, we perform knowledge reduction of dynamic covering information systems with the incremental approaches

    Covering rough sets based on neighborhoods: An approach without using neighborhoods

    Get PDF
    Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphismis provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.Comment: 13 pages; to appear in International Journal of Approximate Reasonin

    Preference Mining Using Neighborhood Rough Set Model on Two Universes

    Get PDF
    Preference mining plays an important role in e-commerce and video websites for enhancing user satisfaction and loyalty. Some classical methods are not available for the cold-start problem when the user or the item is new. In this paper, we propose a new model, called parametric neighborhood rough set on two universes (NRSTU), to describe the user and item data structures. Furthermore, the neighborhood lower approximation operator is used for defining the preference rules. Then, we provide the means for recommending items to users by using these rules. Finally, we give an experimental example to show the details of NRSTU-based preference mining for cold-start problem. The parameters of the model are also discussed. The experimental results show that the proposed method presents an effective solution for preference mining. In particular, NRSTU improves the recommendation accuracy by about 19% compared to the traditional method
    corecore