246 research outputs found

    Une méthode pour l'évaluation de la qualité des images 3D stéréoscopiques.

    Get PDF
    Dans le contexte d'un intérêt grandissant pour les systèmes stéréoscopiques, mais sans méthodes reproductible pour estimer leur qualité, notre travail propose une contribution à la meilleure compréhension des mécanismes de perception et de jugement humains relatifs au concept multi-dimensionnel de qualité d'image stéréoscopique. Dans cette optique, notre démarche s'est basée sur un certain nombre d'outils : nous avons proposé un cadre adapté afin de structurer le processus d'analyse de la qualité des images stéréoscopiques, nous avons implémenté dans notre laboratoire un système expérimental afin de conduire plusieurs tests, nous avons crée trois bases de données d'images stéréoscopiques contenant des configurations précises et enfin nous avons conduit plusieurs expériences basées sur ces collections d'images. La grande quantité d'information obtenue par l'intermédiaire de ces expérimentations a été utilisée afin de construire un premier modèle mathématique permettant d'expliquer la perception globale de la qualité de la stéréoscopie en fonction des paramètres physiques des images étudiée.In a context of ever-growing interest in stereoscopic systems, but where no standardized algorithmic methods of stereoscopic quality assessment exist, our work stands as a step forward in the understanding of the human perception and judgment mechanisms related to the multidimensional concept of stereoscopic image quality. We used a series of tools in order to perform in-depth investigations in this direction: we proposed an adapted framework to structure the process of stereoscopic quality assessment, we implemented a stereoscopic system in our laboratory for performing various tests, we created three stereoscopic datasets with precise structures, and we performed several experimental studies using these datasets. The numerous experimental data obtained were used in order to propose a first mathematical framework for explaining the overall percept of stereoscopic quality in function of the physical parameters of the stereoscopic images under study.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    An Investigation of Computer Vision Syndrome with Smart Devices

    Get PDF
    The overarching theme of the thesis was to investigate the association between smart device use and computer vision syndrome. The initial study designed and developed the Open Field Tear film Analyser (OFTA) enabling a continuous, real-time assessment of the tear film and blink characteristics during smart device use. The monocular OFTA prototype was validated and showed good intra- and inter-observer repeatability relative to the Oculus Keratograph 5M and Bausch and Lomb one position keratometer. Subsequently, tear osmolarity following engagement with reading and gaming tasks on smart device and paper platforms was investigated. Discrete measures of osmolarity pre- and post-engagement with the tasks were obtained with the TearLab osmometer; osmolarity values differed between platforms when participants were engaged in a gaming task but no such difference was observed with the reading task. In addition, the influence of repeated measurements on tear osmolarity was also explored. To simulate the habitual binocular viewing conditions normally associated with smart device use, the binocular OFTA was developed. The device was used to assess the tear film and blink characteristics whilst engaging with reading and gaming tasks on smart device and paper platforms. The results revealed differences in blink characteristics and non-invasive tear break up time between the different platforms and tasks assessed. In addition, the thesis also reports on an investigation examining the real-time accommodative response to various targets displayed on smart devices using an open-field autorefractor with a Badal lens system adaptation. The results showed that accommodative latency, accommodative lag, mean velocity of accommodation, speed of disaccommodation and mean velocity of disaccommodation varied across the different platforms. Through the use of validated subjective questionnaires and smartphone apps, the relationship between duration of smartphone use and symptoms of dry eye were examined. The findings of this study demonstrated that longer duration of smartphone and personal computer use were associated with higher risk of dry eyes as indicated by subjective questionnaire outcomes.Ministry of Higher Education, MalaysiaInternational Islamic University Malaysi

    A Neurophysiologic Study Of Visual Fatigue In Stereoscopic Related Displays

    Get PDF
    Two tasks were investigated in this study. The first study investigated the effects of alignment display errors on visual fatigue. The experiment revealed the following conclusive results: First, EEG data suggested the possibility of cognitively-induced time compensation changes due to a corresponding effect in real-time brain activity by the eyes trying to compensate for the alignment. The magnification difference error showed more significant effects on all EEG band waves, which were indications of likely visual fatigue as shown by the prevalence of simulator sickness questionnaire (SSQ) increases across all task levels. Vertical shift errors were observed to be prevalent in theta and beta bands of EEG which probably induced alertness (in theta band) as a result of possible stress. Rotation errors were significant in the gamma band, implying the likelihood of cognitive decline because of theta band influence. Second, the hemodynamic responses revealed that significant differences exist between the left and right dorsolateral prefrontal due to alignment errors. There was also a significant difference between the main effect for power band hemisphere and the ATC task sessions. The analyses revealed that there were significant differences between the dorsal frontal lobes in task processing and interaction effects between the processing lobes and tasks processing. The second study investigated the effects of cognitive response variables on visual fatigue. Third, the physiologic indicator of pupil dilation was 0.95mm that occurred at a mean time of 38.1min, after which the pupil dilation begins to decrease. After the average saccade rest time of 33.71min, saccade speeds leaned toward a decrease as a possible result of fatigue on-set. Fourth, the neural network classifier showed visual response data from eye movement were identified as the best predictor of visual fatigue with a classification accuracy of 90.42%. Experimental data confirmed that 11.43% of the participants actually experienced visual fatigue symptoms after the prolonged task

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018

    Get PDF
    The First Conference on materials science and engineering, including physics, physical chemistry, condensed matter chemistry, and technology in general, was held in September 1995, in Herceg Novi. An initiative to establish Yugoslav Materials Research Society was born at the conference and, similar to other MR societies in the world, the programme was made and objectives determined. The Yugoslav Materials Research Society (Yu-MRS), a nongovernment and non-profit scientific association, was founded in 1997 to promote multidisciplinary goal-oriented research in materials science and engineering. The main task and objective of the Society has been to encourage creativity in materials research and engineering to reach a harmonic coordination between achievements in this field in our country and analogous activities in the world with an aim to include our country into global international projects. Until 2003, Conferences were held every second year and then they grew into Annual Conferences that were traditionally held in Herceg Novi in September of every year. In 2007 Yu-MRS formed two new MRS: MRS-Serbia (official successor of Yu-MRS) and MRS-Montenegro (in founding). In 2008, MRS – Serbia became a member of FEMS (Federation of European Materials Societies)
    • …
    corecore