1,244,116 research outputs found

    Critical Casimir interaction of ellipsoidal colloids with a planar wall

    Full text link
    Based on renormalization group concepts and explicit mean field calculations we study the universal contribution to the effective force and torque acting on an ellipsoidal colloidal particle which is dissolved in a critical fluid and is close to a homogeneous planar substrate. At the same closest distance between the substrate and the surface of the particle, the ellipsoidal particle prefers an orientation parallel to the substrate and the magnitude of the fluctuation induced force is larger than if the orientation of the particle is perpendicular to the substrate. The sign of the critical torque acting on the ellipsoidal particle depends on the type of boundary conditions for the order parameter at the particle and substrate surfaces, and on the pivot with respect to which the particle rotates

    Parasitic Effects Reduction for Wafer-Level Packaging of RF-Mems

    Get PDF
    In RF-MEMS packaging, next to the protection of movable structures, optimization of package electrical performance plays a very important role. In this work, a wafer-level packaging process has been investigated and optimized in order to minimize electrical parasitic effects. The RF-MEMS package concept used is based on a wafer-level bonding of a capping silicon substrate to an RF-MEMS wafer. The capping silicon substrate resistivity, substrate thickness and the geometry of through-substrate electrical interconnect vias have been optimized using finite-element electromagnetic simulations (Ansoft HFSS). Test structures for electrical characterization have been designed and after their fabrication, measurement results will be compared with simulations.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Solid-state dewetting on curved substrates

    Full text link
    Based on the thermodynamic variation to the free energy functional, we propose a sharp-interface model for simulating solid-state dewetting of thin films on rigid curved substrates in two dimensions. This model describes the interface evolution which occurs through surface diffusion-controlled mass transport and contact point migration along the curved substrate. Furthermore, the surface energy anisotropy is easily included into the model, and the contact point migration is explicitly described by the relaxed contact angle boundary condition. We implement the mathematical model by a semi-implicit parametric finite element method to study several interesting phenomena, such as "small" particle migration on curved substrates and templated solid-state dewetting on a pre-patterned substrate. Based on ample numerical simulations, we demonstrate that, the migration velocity of a "small" solid particle is proportional to the substrate curvature gradient κ^\hat{\kappa}' and inversely proportional to the square root of the area of the particle A\sqrt{A}, and it decreases when the isotropic Young angle θi\theta_i increases. In addition, we also observe four periodic categories of dewetting on a pre-patterned sinusoidal substrate. Our approach can provide a convenient and powerful tool to exploring how to produce well-organized nanoparticles by making use of template-assisted solid-state dewetting.Comment: 14 pages, 11 figure

    Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator

    Get PDF
    The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared

    RF MEMS Based Tunable Bowtie Shaped Substrate Integrated Waveguide Filter

    Get PDF
    A tunable bandpass filter based on a technique that utilizes substrate integrated waveguide (SIW) and double coupling is presented. The SIW based bandpass filter is implemented using a bowtie shaped resonator structure. The bowtie shaped filter exhibits similar performance as found in rectangular and circular shaped SIW based bandpass filters. This concept reduces the circuit foot print of SIW; along with miniaturization high quality factor is maintained by the structure. The design methodology for single-pole triangular resonator structure is presented. Two different inter-resonator couplings of the resonators are incorporated in the design of the two-pole bowtie shaped SIW bandpass filter, and switching between the two couplings using a packaged RF MEMS switch delivers the tunable filter. A tunning of 1 GHz is achieved for two frequency states of 6.3 and 7.3 GHz. The total size of the circuit is 70mm x 36mm x 0.787 mm (LxWxH)

    Strain engineered graphene using a nanostructured substrate: I Deformations

    Full text link
    Using atomistic simulations we investigate the morphological properties of graphene deposited on top of a nanostructured substrate. Sinusoidally corrugated surfaces, steps, elongated trenches, one dimensional and cubic barriers, spherical bubbles, Gaussian bump and Gaussian depression are considered as support structures for graphene. The graphene-substrate interaction is governed by van der Waals forces and the profile of the graphene layer is determined by minimizing the energy using molecular dynamics simulations. Based on the obtained optimum configurations, we found that: (i) for graphene placed over sinusoidally corrugated substrates with corrugation wave lengths longer than 2\,nm, the graphene sheet follows the substrate pattern while for supported graphene it is always suspended across the peaks of the substrate, (ii) the conformation of graphene to the substrate topography is enhanced when increasing the energy parameter in the van der Waals model, (iii) the adhesion of graphene into the trenches depends on the width of the trench and on graphene's orientation, i.e. in contrast to a small width (3 nm) nanoribbon with armchair edges, the one with zig-zag edges follows the substrate profile, (iv) atomic scale graphene follows a Gaussian bump substrate but not the substrate with a Gaussian depression, and (v) the adhesion energy due to van der Waals interaction varies in the range [0.1-0.4] J/m^2.Comment: 12 pages and 16 figures, To appear in Phys. Rev.

    The next generation textile antennas based on substrate integrated waveguide technology

    Get PDF
    Textile antennas for body-worn applications have some very specific requirements and needs. From an electrical engineer's point of view, good radiation characteristics and impedance matching to the active electronics are important. From the wearer's perspective, the antenna should be unobtrusively integrated into the clothing, and the smart textile comfortable to wear. New techniques offer the potential to fulfill these different needs. One new approach consists of applying metalized eyelets to implement substrate integrated waveguide technology on textile materials. This results in high-performance on-body antennas with excellent behavior in close proximity of the human body. Two realizations are discussed: a wideband design and a miniaturized half mode substrate integrated waveguide dual-band design. Both yield excellent free-space and on-body performance, and superb antenna-body isolation, automatically resulting in very robust characteristics when deployed on-body
    corecore