5,687 research outputs found

    Network planning aspects of DS-CDMA with particular emphasis on soft handoff

    Get PDF

    Application of adaptive antenna technology to third generation radio architectures

    Get PDF

    Cell sleeping for energy efficiency in cellular networks: Is it viable?

    Get PDF
    An approach advocated in the recent literature for reducing energy consumption in cellular networks is to put base stations to sleep when traffic loads are low. However, several practical considerations are ignored in these studies. In this paper, we aim to raise questions on the feasibility and benefits of base station sleeping. Specifically we analyze the interference and capacity of a coverage-based energy reduction system in CDMA based cellular networks using a simple analytical model and show that sleeping may not be a feasible solution to reduce energy consumption in many scenarios. © 2012 IEEE

    A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints

    Full text link
    A new analysis is presented for the direct-sequence code-division multiple access (DS-CDMA) cellular uplink. For a given network topology, closed-form expressions are found for the outage probability and rate of each uplink in the presence of path-dependent Nakagami fading and log-normal shadowing. The topology may be arbitrary or modeled by a random spatial distribution for a fixed number of base stations and mobiles placed over a finite area with the separations among them constrained to exceed a minimum distance. The analysis is more detailed and accurate than existing ones and facilitates the resolution of network design issues, including the influence of the minimum base-station separation, the role of the spreading factor, and the impact of various power-control and rate-control policies. It is shown that once power control is established, the rate can be allocated according to a fixed-rate or variable-rate policy with the objective of either meeting an outage constraint or maximizing throughput. An advantage of the variable-rate policy is that it allows an outage constraint to be enforced on every uplink, whereas the fixed-rate policy can only meet an average outage constraint.Comment: 6 pages, 6 figures, to appear at International Conference on Communications (ICC) 201

    Analysis of Multi-Cell Downlink Cooperation with a Constrained Spatial Model

    Full text link
    Multi-cell cooperation (MCC) mitigates intercell interference and improves throughput at the cell edge. This paper considers a cooperative downlink, whereby cell-edge mobiles are served by multiple cooperative base stations. The cooperating base stations transmit identical signals over paths with non-identical path losses, and the receiving mobile performs diversity combining. The analysis in this paper is driven by a new expression for the conditional outage probability when signals arriving over different paths are combined in the presence of noise and interference, where the conditioning is with respect to the network topology and shadowing. The channel model accounts for path loss, shadowing, and Nakagami fading, and the Nakagami fading parameters do not need to be identical for all paths. To study performance over a wide class of network topologies, a random spatial model is adopted, and performance is found by statistically characterizing the rates provided on the downlinks. To model realistic networks, the model requires a minimum separation among base stations. Having adopted a realistic model and an accurate analysis, the paper proceeds to determine performance under several resource-allocation policies and provides insight regarding how the cell edge should be defined.Comment: 6 pages, 3 figures, IEEE Global Telecommun. Conf. (GLOBECOM), 2013, to appear. arXiv admin note: text overlap with arXiv:1210.366
    corecore