4,616 research outputs found
Preface: Impacts of extreme climate events and disturbances on carbon dynamics
The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics
Habitat structure: a fundamental concept and framework for urban soil ecology
Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils
Initial carbon, nitrogen, and phosphorus fluxes following ponderosa pine restoration treatments
Southwestern ponderosa pine forests were dramatically altered by fire regime disruption that accompanied Euro-American settlement in the 1800s. Major changes include increased tree density, diminished herbaceous cover, and a shift from a frequent lowintensity fire regime to a stand-replacing fire regime. Ecological restoration via thinning and prescribed burning is being widely applied to return forests to the pre-settlement condition, but the effects of restoration on ecosystem function are unknown. We measured carbon (C), nitrogen (N), and phosphorus (P) fluxes during the first two years after the implementation of a replicated field experiment comparing thinning and composite (thinning, forest floor fuel reduction, and prescribed burning) restoration treatments to untreated controls in a ponderosa pine forest in northern Arizona, USA. Total net primary productivity (260 g Cm22yr21) was similar among treatments because a 3050(percent) decrease in pine foliage and fine-root production in restored ecosystems was balanced by greater wood, coarse root, and herbaceous production. Herbaceous plants accounted for ,20(percent) of total plant C, N, and P uptake in the controls but from 25(percent) to 70(percent) in restored plots. Total plant N uptake was ;3 g Nm22yr21 in all treatments, but net N mineralization was just one-half and twothirds of this value in the control and composite restoration, respectively. Element flux rates in controls generally declined more in a drought year than rates in restoration treatments. In this ponderosa pine forest, ecological restoration that emulated pre-settlement stand structure and fire characteristics had a small effect on plant C, N, and P fluxes at the whole ecosystem level because lower pine foliage and fine-root fluxes in treated plots (compared to controls) were approximately balanced by higher fluxes in wood and herbaceous plants
When a tree dies in the forest : scaling climate-driven tree mortality to ecosystem water and carbon fluxes
Altres ajuts: COST FP1106 network STReESS.Drought- and heat-driven tree mortality, along with associated insect outbreaks, have been observed globally in recent decades and are expected to increase in future climates. Despite its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where the effects of mortality are a function of the mortality attributes, such as spatial clustering and functional role of the trees killed, and ecosystem properties, such as productivity and diversity. We draw upon remote-sensing data and ecosystem flux data to illustrate this framework and place climate-driven tree mortality in the context of other major disturbances. We find that emerging evidence suggests that climate-driven tree mortality impacts may be relatively small and recovery times are remarkably fast (~4 years for net ecosystem production). We review the key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of variation needed for better monitoring and modeling of the impacts of tree mortality and provide a foundation for including climate-driven tree mortality in a disturbance framework
Effects of management practices on water yield in small headwater catchments at Cordillera de los Andes in southern Chile
In several parts of the world, drinking water is obtained from springs in natural and managed mountainous forests. Since forests regulate quality as well as quantity of water, the effects of forest-management activities on water yield are an important subject of study. The objective of this study was to evaluate the effects of forest management on water yield in managed and unmanaged temperate native rainforests in the Andean range of southern Chile. The study area is located in San Pablo, a forest reserve of 2,184 ha located at the Andean range of southern Chile (39º 35’ S, 72º 07’ W, 600-925 m a.s.l.). From April 2003 to October 2008, seven experimental small catchments were monitored for rainfall, throughfall, stemflow, soil water infiltration, soil water percolation and runoff. In 2002, one catchment with a secondary deciduous forest was managed, through thinning, causing a reduction in basal area by 35% whereas the other one remained unthinned as control. Both watersheds are adjacent and are located at 600 – 720 m of elevation on deep loam textured volcanic soils (100 - 120 cm). In November 2006, a watershed covered with evergreen old-growth forests was thinned extracting 40% of the total basal area whereas another adjacent catchment remained unthinned as control. Both watersheds are located at 725 – 910 m a.s.l. and have the same aspects. The effects of management of deciduous secondary forests showed that for the period April 2003-March 2007, the mean value of the increase in total annual streamflow was 12.7%, ranging from 10.9% to 14.6%. Thinning of the evergreen old-growth forest increased the streamflow for the period November 2006-October 2008 with 6.1%, ranging from 4.4% to 7.8%, with greater differences during summertime (15.7 to 206%)
Topographic controls of CH4 and N2O fluxes from temperate and boreal forest soils in eastern Canada.
Effects of climate extremes on the terrestrial carbon cycle : concepts, processes and potential future impacts
This article is protected by copyright. All rights reserved. Acknowledgements This work emerged from the CARBO-Extreme project, funded by the European Community’s 7th framework programme under grant agreement (FP7-ENV-2008-1-226701). We are grateful to the Reviewers and the Subject Editor for helpful guidance. We thank to Silvana Schott for graphic support. Mirco Miglivacca provided helpful comments on the manuscript. Michael Bahn acknowledges support from the Austrian Science Fund (FWF; P22214-B17). Sara Vicca is a postdoctoral research associate of the Fund for Scientific Research – Flanders. Wolfgang Cramer contributes to the Labex OT-Med (n° ANR-11- LABX-0061) funded by the French government through the A*MIDEX project (n° ANR-11-IDEX-0001-02). Flurin Babst acknowledges support from the Swiss National Science Foundation (P300P2_154543).Peer reviewedPublisher PD
Recommended from our members
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon
Recommended from our members
Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling
- …
