4,894 research outputs found

    Server Placement with Shared Backups for Disaster-Resilient Clouds

    Full text link
    A key strategy to build disaster-resilient clouds is to employ backups of virtual machines in a geo-distributed infrastructure. Today, the continuous and acknowledged replication of virtual machines in different servers is a service provided by different hypervisors. This strategy guarantees that the virtual machines will have no loss of disk and memory content if a disaster occurs, at a cost of strict bandwidth and latency requirements. Considering this kind of service, in this work, we propose an optimization problem to place servers in a wide area network. The goal is to guarantee that backup machines do not fail at the same time as their primary counterparts. In addition, by using virtualization, we also aim to reduce the amount of backup servers required. The optimal results, achieved in real topologies, reduce the number of backup servers by at least 40%. Moreover, this work highlights several characteristics of the backup service according to the employed network, such as the fulfillment of latency requirements.Comment: Computer Networks 201

    Service Chain (SC) Mapping with Multiple SC Instances in a Wide Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is usually referred as SC mapping. In a Wide Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC, one single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with SC mapping with multiple SC instances to minimize network resource consumption. Exact mathematical modeling of this problem results in a quadratic formulation. We propose a two-phase column-generation-based model and solution in order to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to solution very close to the minimum bandwidth consumption

    A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is called SC mapping. In a Wide-Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC; then, a single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with the problem of SC mapping with multiple SC instances to minimize network resource consumption. We first propose an Integer Linear Program (ILP) to solve this problem. Since ILP does not scale to large networks, we develop a column-generation-based ILP (CG-ILP) model. However, we find that exact mathematical modeling of the problem results in quadratic constraints in our CG-ILP. The quadratic constraints are made linear but even the scalability of CG-ILP is limited. Hence, we also propose a two-phase column-generation-based approach to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to a solution very close to the minimum bandwidth consumption. Further, this approach also helps us to analyze the effects of number of VNF replicas and number of NFV nodes on bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671
    • …
    corecore