4,050 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Optimal Resource Allocation and Relay Selection in Bandwidth Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we investigate joint optimal relay selection and resource allocation under bandwidth exchange (BE) enabled incentivized cooperative forwarding in wireless networks. We consider an autonomous network where N nodes transmit data in the uplink to an access point (AP) / base station (BS). We consider the scenario where each node gets an initial amount (equal, optimal based on direct path or arbitrary) of bandwidth, and uses this bandwidth as a flexible incentive for two hop relaying. We focus on alpha-fair network utility maximization (NUM) and outage reduction in this environment. Our contribution is two-fold. First, we propose an incentivized forwarding based resource allocation algorithm which maximizes the global utility while preserving the initial utility of each cooperative node. Second, defining the link weight of each relay pair as the utility gain due to cooperation (over noncooperation), we show that the optimal relay selection in alpha-fair NUM reduces to the maximum weighted matching (MWM) problem in a non-bipartite graph. Numerical results show that the proposed algorithms provide 20- 25% gain in spectral efficiency and 90-98% reduction in outage probability.Comment: 8 pages, 7 figure

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc
    • …
    corecore