3,814 research outputs found

    HAMLET -- A Learning Curve-Enabled Multi-Armed Bandit for Algorithm Selection

    Full text link
    Automated algorithm selection and hyperparameter tuning facilitates the application of machine learning. Traditional multi-armed bandit strategies look to the history of observed rewards to identify the most promising arms for optimizing expected total reward in the long run. When considering limited time budgets and computational resources, this backward view of rewards is inappropriate as the bandit should look into the future for anticipating the highest final reward at the end of a specified time budget. This work addresses that insight by introducing HAMLET, which extends the bandit approach with learning curve extrapolation and computation time-awareness for selecting among a set of machine learning algorithms. Results show that the HAMLET Variants 1-3 exhibit equal or better performance than other bandit-based algorithm selection strategies in experiments with recorded hyperparameter tuning traces for the majority of considered time budgets. The best performing HAMLET Variant 3 combines learning curve extrapolation with the well-known upper confidence bound exploration bonus. That variant performs better than all non-HAMLET policies with statistical significance at the 95% level for 1,485 runs.Comment: 8 pages, 8 figures; IJCNN 2020: International Joint Conference on Neural Network

    A Survey on Practical Applications of Multi-Armed and Contextual Bandits

    Full text link
    In recent years, multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems and information retrieval to healthcare and finance, due to its stellar performance combined with certain attractive properties, such as learning from less feedback. The multi-armed bandit field is currently flourishing, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This article aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize state-of-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this exciting and fast-growing field.Comment: under review by IJCAI 2019 Surve

    Automated Curriculum Learning for Neural Networks

    Full text link
    We introduce a method for automatically selecting the path, or syllabus, that a neural network follows through a curriculum so as to maximise learning efficiency. A measure of the amount that the network learns from each data sample is provided as a reward signal to a nonstationary multi-armed bandit algorithm, which then determines a stochastic syllabus. We consider a range of signals derived from two distinct indicators of learning progress: rate of increase in prediction accuracy, and rate of increase in network complexity. Experimental results for LSTM networks on three curricula demonstrate that our approach can significantly accelerate learning, in some cases halving the time required to attain a satisfactory performance level

    AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning

    Full text link
    Multi-task learning (MTL) has achieved success over a wide range of problems, where the goal is to improve the performance of a primary task using a set of relevant auxiliary tasks. However, when the usefulness of the auxiliary tasks w.r.t. the primary task is not known a priori, the success of MTL models depends on the correct choice of these auxiliary tasks and also a balanced mixing ratio of these tasks during alternate training. These two problems could be resolved via manual intuition or hyper-parameter tuning over all combinatorial task choices, but this introduces inductive bias or is not scalable when the number of candidate auxiliary tasks is very large. To address these issues, we present AutoSeM, a two-stage MTL pipeline, where the first stage automatically selects the most useful auxiliary tasks via a Beta-Bernoulli multi-armed bandit with Thompson Sampling, and the second stage learns the training mixing ratio of these selected auxiliary tasks via a Gaussian Process based Bayesian optimization framework. We conduct several MTL experiments on the GLUE language understanding tasks, and show that our AutoSeM framework can successfully find relevant auxiliary tasks and automatically learn their mixing ratio, achieving significant performance boosts on several primary tasks. Finally, we present ablations for each stage of AutoSeM and analyze the learned auxiliary task choices.Comment: NAACL 2019 (12 pages

    A Survey of Learning in Multiagent Environments: Dealing with Non-Stationarity

    Full text link
    The key challenge in multiagent learning is learning a best response to the behaviour of other agents, which may be non-stationary: if the other agents adapt their strategy as well, the learning target moves. Disparate streams of research have approached non-stationarity from several angles, which make a variety of implicit assumptions that make it hard to keep an overview of the state of the art and to validate the innovation and significance of new works. This survey presents a coherent overview of work that addresses opponent-induced non-stationarity with tools from game theory, reinforcement learning and multi-armed bandits. Further, we reflect on the principle approaches how algorithms model and cope with this non-stationarity, arriving at a new framework and five categories (in increasing order of sophistication): ignore, forget, respond to target models, learn models, and theory of mind. A wide range of state-of-the-art algorithms is classified into a taxonomy, using these categories and key characteristics of the environment (e.g., observability) and adaptation behaviour of the opponents (e.g., smooth, abrupt). To clarify even further we present illustrative variations of one domain, contrasting the strengths and limitations of each category. Finally, we discuss in which environments the different approaches yield most merit, and point to promising avenues of future research.Comment: 64 pages, 7 figures. Under review since November 201

    Dynamic Multi-Level Multi-Task Learning for Sentence Simplification

    Full text link
    Sentence simplification aims to improve readability and understandability, based on several operations such as splitting, deletion, and paraphrasing. However, a valid simplified sentence should also be logically entailed by its input sentence. In this work, we first present a strong pointer-copy mechanism based sequence-to-sequence sentence simplification model, and then improve its entailment and paraphrasing capabilities via multi-task learning with related auxiliary tasks of entailment and paraphrase generation. Moreover, we propose a novel 'multi-level' layered soft sharing approach where each auxiliary task shares different (higher versus lower) level layers of the sentence simplification model, depending on the task's semantic versus lexico-syntactic nature. We also introduce a novel multi-armed bandit based training approach that dynamically learns how to effectively switch across tasks during multi-task learning. Experiments on multiple popular datasets demonstrate that our model outperforms competitive simplification systems in SARI and FKGL automatic metrics, and human evaluation. Further, we present several ablation analyses on alternative layer sharing methods, soft versus hard sharing, dynamic multi-armed bandit sampling approaches, and our model's learned entailment and paraphrasing skills.Comment: COLING 2018 (15 pages

    An Empirical Comparison of Syllabuses for Curriculum Learning

    Full text link
    Syllabuses for curriculum learning have been developed on an ad-hoc, per task basis and little is known about the relative performance of different syllabuses. We identify a number of syllabuses used in the literature. We compare the identified syllabuses based on their effect on the speed of learning and generalization ability of a LSTM network on three sequential learning tasks. We find that the choice of syllabus has limited effect on the generalization ability of a trained network. In terms of speed of learning our results demonstrate that the best syllabus is task dependent but that a recently proposed automated curriculum learning approach - Predictive Gain, performs very competitively against all identified hand-crafted syllabuses. The best performing hand-crafted syllabus which we term Look Back and Forward combines a syllabus which steps through tasks in the order of their difficulty with a uniform distribution over all tasks. Our experimental results provide an empirical basis for the choice of syllabus on a new problem that could benefit from curriculum learning. Additionally, insights derived from our results shed light on how to successfully design new syllabuses

    Benchmark and Survey of Automated Machine Learning Frameworks

    Full text link
    Machine learning (ML) has become a vital part in many aspects of our daily life. However, building well performing machine learning applications requires highly specialized data scientists and domain experts. Automated machine learning (AutoML) aims to reduce the demand for data scientists by enabling domain experts to build machine learning applications automatically without extensive knowledge of statistics and machine learning. This paper is a combination of a survey on current AutoML methods and a benchmark of popular AutoML frameworks on real data sets. Driven by the selected frameworks for evaluation, we summarize and review important AutoML techniques and methods concerning every step in building an ML pipeline. The selected AutoML frameworks are evaluated on 137 data sets from established AutoML benchmark suits.Comment: Revised version accepted for publication at Journal of Artificial Intelligence Research (JAIR

    Adaptive Model Selection Framework: An Application to Airline Pricing

    Full text link
    Multiple machine learning and prediction models are often used for the same prediction or recommendation task. In our recent work, where we develop and deploy airline ancillary pricing models in an online setting, we found that among multiple pricing models developed, no one model clearly dominates other models for all incoming customer requests. Thus, as algorithm designers, we face an exploration - exploitation dilemma. In this work, we introduce an adaptive meta-decision framework that uses Thompson sampling, a popular multi-armed bandit solution method, to route customer requests to various pricing models based on their online performance. We show that this adaptive approach outperform a uniformly random selection policy by improving the expected revenue per offer by 43% and conversion score by 58% in an offline simulation

    AutoML from Service Provider's Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

    Full text link
    AutoML has become a popular service that is provided by most leading cloud service providers today. In this paper, we focus on the AutoML problem from the \emph{service provider's perspective}, motivated by the following practical consideration: When an AutoML service needs to serve {\em multiple users} with {\em multiple devices} at the same time, how can we allocate these devices to users in an efficient way? We focus on GP-EI, one of the most popular algorithms for automatic model selection and hyperparameter tuning, used by systems such as Google Vizer. The technical contribution of this paper is the first multi-device, multi-tenant algorithm for GP-EI that is aware of \emph{multiple} computation devices and multiple users sharing the same set of computation devices. Theoretically, given NN users and MM devices, we obtain a regret bound of O((MIU(T,K)+M)N2M)O((\text{\bf {MIU}}(T,K) + M)\frac{N^2}{M}), where MIU(T,K)\text{\bf {MIU}}(T,K) refers to the maximal incremental uncertainty up to time TT for the covariance matrix KK. Empirically, we evaluate our algorithm on two applications of automatic model selection, and show that our algorithm significantly outperforms the strategy of serving users independently. Moreover, when multiple computation devices are available, we achieve near-linear speedup when the number of users is much larger than the number of devices
    corecore