20,744 research outputs found

    Speckle noise in satellite based lidar systems

    Get PDF
    The lidar system model was described, and the statistics of the signal and noise at the receiver output were derived. Scattering media effects were discussed along with polarization and atmospheric turbulence. The major equations were summarized and evaluated for some typical parameters

    Full 3D Quantum Transport Simulation of Atomistic Interface Roughness in Silicon Nanowire FETs

    Full text link
    The influence of interface roughness scattering (IRS) on the performances of silicon nanowire field-effect transistors (NWFETs) is numerically investigated using a full 3D quantum transport simulator based on the atomistic sp3d5s* tight-binding model. The interface between the silicon and the silicon dioxide layers is generated in a real-space atomistic representation using an experimentally derived autocovariance function (ACVF). The oxide layer is modeled in the virtual crystal approximation (VCA) using fictitious SiO2 atoms. -oriented nanowires with different diameters and randomly generated surface configurations are studied. The experimentally observed ON-current and the threshold voltage is quantitatively captured by the simulation model. The mobility reduction due to IRS is studied through a qualitative comparison of the simulation results with the experimental results

    Modeling surface roughness scattering in metallic nanowires

    Full text link
    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.Comment: 25 pages, 11 figure

    Surface roughness measuring system

    Get PDF
    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system

    Coherent transport through graphene nanoribbons in the presence of edge disorder

    Full text link
    We simulate electron transport through graphene nanoribbons of experimentally realizable size (length L up to 2 micrometer, width W approximately 40 nm) in the presence of scattering at rough edges. Our numerical approach is based on a modular recursive Green's function technique that features sub-linear scaling with L of the computational effort. We identify the influence of the broken A-B sublattice (or chiral) symmetry and of K-K' scattering by Fourier spectroscopy of individual scattering states. For long ribbons we find Anderson-localized scattering states with a well-defined exponential decay over 10 orders of magnitude in amplitude.Comment: 8 pages, 6 Figure
    corecore