48 research outputs found

    Agent-Organized Network Coalition Formation

    Get PDF
    This thesis presents work based on modeling multi-agent coalition formation in an agent organized network. Agents choose which agents to connect with in the network. Tasks are periodically introduced into the network. Each task is defined by a set of skills that agents must fill. Agents form a coalition to complete a task by either joining an existing coalition a network neighbor belongs to, or by proposing a new coalition for a task no agents have proposed a coalition for. We introduce task patience and strategic task selection and show that they improve the number of successful coalitions agents form. We also introduce new methods of choosing agents to connect to in the network and compare the performance of these and existing methods

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Land Perspectives: People, Tenure, Planning, Tools, Space, and Health

    Get PDF
    Good land administration and spatial enablement help to improve people’s living conditions in urban, peri-urban, and rural areas. They protect people’s land rights (including of individuals, communities, and the state) through good governance principles and practices. This makes research concerning land administration practices and geographic (spatial) sciences—whether in developed or developing countries—essential to developing tools or methods for securing natural resource rights for people. In the time of COVID-19, understanding the land and health or wellbeing nexus is also crucial for adequate living conditions for people in living urban, peri-urban, and rural areas. This Special Issue comprises 15 articles (including the editorial) that present insights on theories and practices on land administration and geographic (spatial) sciences in the context of land/water/forest–people–health–wellbeing nexus

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia

    An algorithmic approach to system architecting using shape grammar-cellular automata

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2008.Includes bibliographical references (p. 404-417).This thesis expands upon the understanding of the fundamentals of system architecting in order to more effectively apply this process to engineering systems. The universal concern about the system architecting process is that the needs and wants of the stakeholders are not being fully satisfied, primarily because too few design alternatives are created and ambiguity exists in the information required. At the same time, it is noted that nature offers a superb example of system architecting and therefore should be considered as a guide for the engineering of systems. Key features of nature's architecting processes include self-generation, diversity, emergence, least action (balance of kinetic and potential energy), system-of-systems organization, and selection for stability. Currently, no human-friendly method appears to exist that addresses the problems in the field of system architecture while at the same time emulating nature's processes. By adapting nature's self-generative approach, a systematic means is offered to more rigorously conduct system architecting and better satisfy stakeholders. After reviewing generative design methods, an algorithmic methodology is developed to generate a space of architectural solutions satisfying a given specification, local constraints, and physical laws. This approach combines a visually oriented human design interface (shape grammar) that provides an intuitive design language with a machine (cellular automata) to execute the system architecture's production set (algorithm). The manual output of the flexible shape grammar, the set of design rules, is transcribed into cellular automata neighborhoods as a sequenced production set that may include other simple programs (such as combinatoric instructions).(cont.) The resulting catalog of system architectures can be unmanageably large, so selection criteria (e.g., stability, matching interfaces, least action) are defined by the architect to narrow the solution space for stakeholder review. The shape grammar-cellular automata algorithmic approach was demonstrated across several domains of study. This methodology improves on the design's clarification and the number of design alternatives produced, which should result in greater stakeholder satisfaction. Of additional significance, this approach has shown value both in the study of the system architecting process, leading to the proposal of normative principles for system architecture, and in the modeling of systems for better understanding.by Thomas H. Speller, Jr.Ph.D

    Characterising and modeling the co-evolution of transportation networks and territories

    Full text link
    The identification of structuring effects of transportation infrastructure on territorial dynamics remains an open research problem. This issue is one of the aspects of approaches on complexity of territorial dynamics, within which territories and networks would be co-evolving. The aim of this thesis is to challenge this view on interactions between networks and territories, both at the conceptual and empirical level, by integrating them in simulation models of territorial systems.Comment: Doctoral dissertation (2017), Universit\'e Paris 7 Denis Diderot. Translated from French. Several papers compose this PhD thesis; overlap with: arXiv:{1605.08888, 1608.00840, 1608.05266, 1612.08504, 1706.07467, 1706.09244, 1708.06743, 1709.08684, 1712.00805, 1803.11457, 1804.09416, 1804.09430, 1805.05195, 1808.07282, 1809.00861, 1811.04270, 1812.01473, 1812.06008, 1908.02034, 2012.13367, 2102.13501, 2106.11996

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    An Energy-Efficient and Reliable Data Transmission Scheme for Transmitter-based Energy Harvesting Networks

    Get PDF
    Energy harvesting technology has been studied to overcome a limited power resource problem for a sensor network. This paper proposes a new data transmission period control and reliable data transmission algorithm for energy harvesting based sensor networks. Although previous studies proposed a communication protocol for energy harvesting based sensor networks, it still needs additional discussion. Proposed algorithm control a data transmission period and the number of data transmission dynamically based on environment information. Through this, energy consumption is reduced and transmission reliability is improved. The simulation result shows that the proposed algorithm is more efficient when compared with previous energy harvesting based communication standard, Enocean in terms of transmission success rate and residual energy.This research was supported by Basic Science Research Program through the National Research Foundation by Korea (NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A3012227)
    corecore