13,923 research outputs found

    Balancing Global Exploration and Local-connectivity Exploitation with Rapidly-exploring Random disjointed-Trees

    Full text link
    Sampling efficiency in a highly constrained environment has long been a major challenge for sampling-based planners. In this work, we propose Rapidly-exploring Random disjointed-Trees* (RRdT*), an incremental optimal multi-query planner. RRdT* uses multiple disjointed-trees to exploit local-connectivity of spaces via Markov Chain random sampling, which utilises neighbourhood information derived from previous successful and failed samples. To balance local exploitation, RRdT* actively explore unseen global spaces when local-connectivity exploitation is unsuccessful. The active trade-off between local exploitation and global exploration is formulated as a multi-armed bandit problem. We argue that the active balancing of global exploration and local exploitation is the key to improving sample efficient in sampling-based motion planners. We provide rigorous proofs of completeness and optimal convergence for this novel approach. Furthermore, we demonstrate experimentally the effectiveness of RRdT*'s locally exploring trees in granting improved visibility for planning. Consequently, RRdT* outperforms existing state-of-the-art incremental planners, especially in highly constrained environments.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Informative Path Planning for Active Field Mapping under Localization Uncertainty

    Full text link
    Information gathering algorithms play a key role in unlocking the potential of robots for efficient data collection in a wide range of applications. However, most existing strategies neglect the fundamental problem of the robot pose uncertainty, which is an implicit requirement for creating robust, high-quality maps. To address this issue, we introduce an informative planning framework for active mapping that explicitly accounts for the pose uncertainty in both the mapping and planning tasks. Our strategy exploits a Gaussian Process (GP) model to capture a target environmental field given the uncertainty on its inputs. For planning, we formulate a new utility function that couples the localization and field mapping objectives in GP-based mapping scenarios in a principled way, without relying on any manually tuned parameters. Extensive simulations show that our approach outperforms existing strategies, with reductions in mean pose uncertainty and map error. We also present a proof of concept in an indoor temperature mapping scenario.Comment: 8 pages, 7 figures, submission (revised) to Robotics & Automation Letters (and IEEE International Conference on Robotics and Automation
    • …
    corecore