119,724 research outputs found

    When queueing is better than push and shove

    Get PDF
    We address the scheduling problem of reordering an existing queue into its efficient order through trade. To that end, we consider individually rational and balanced budget direct and indirect mechanisms. We show that this class of mechanisms allows us to form efficient queues provided that existing property rights for the service are small enough to enable trade between the agents. In particular, we show on the one hand that no queue under a fully deterministic service schedule such as first-come, first-serve can be dissolved efficiently and meet our requirements. If, on the other hand, the alternative is service anarchy (ie. a random queue), every existing queue can be transformed into an efficient order

    Runtime Optimizations for Prediction with Tree-Based Models

    Full text link
    Tree-based models have proven to be an effective solution for web ranking as well as other problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, given an already-trained model. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processor architectures. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures and significantly improve the speed of tree-based models over hard-coded if-else blocks. Our work contributes to the exploration of architecture-conscious runtime implementations of machine learning algorithms
    corecore