10 research outputs found

    Bipedial Locomotion Up Sandy Slopes: Systematic Experiments Using Zero Moment Point Methods

    Get PDF
    Bipedal robotic locomotion in granular media presents a unique set of challenges at the intersection of granular physics and robotic locomotion. In this paper, we perform a systematic experimental study in which biped robotic gaits for traversing a sandy slope are empirically designed using Zero Moment Point (ZMP) methods. We are able to implement gaits that allow our 7 degree-of-freedom planar walking robot to ascend slopes with inclines up to 10°. Firstly, we identify a given set of kinematic parameters that meet the ZMP stability criterion for uphill walking at a given angle. We then find that further relating the step lengths and center of mass heights to specific slope angles through an interpolated fit allows for significantly improved success rates when ascending a sandy slope. Our results provide increased insight into the design, sensitivity and robustness of gaits on granular material, and the kinematic changes necessary for stable locomotion on complex media

    Bipedial Locomotion Up Sandy Slopes: Systematic Experiments Using Zero Moment Point Methods

    Get PDF
    Bipedal robotic locomotion in granular media presents a unique set of challenges at the intersection of granular physics and robotic locomotion. In this paper, we perform a systematic experimental study in which biped robotic gaits for traversing a sandy slope are empirically designed using Zero Moment Point (ZMP) methods. We are able to implement gaits that allow our 7 degree-of-freedom planar walking robot to ascend slopes with inclines up to 10°. Firstly, we identify a given set of kinematic parameters that meet the ZMP stability criterion for uphill walking at a given angle. We then find that further relating the step lengths and center of mass heights to specific slope angles through an interpolated fit allows for significantly improved success rates when ascending a sandy slope. Our results provide increased insight into the design, sensitivity and robustness of gaits on granular material, and the kinematic changes necessary for stable locomotion on complex media

    Learning for Humanoid Multi-Contact Navigation Planning

    Full text link
    Humanoids' abilities to navigate uneven terrain make them well-suited for disaster response efforts, but humanoid motion planning in unstructured environments remains a challenging problem. In this dissertation we focus on planning contact sequences for a humanoid robot navigating in large unstructured environments using multi-contact motion, including both foot and palm contacts. In particular, we address the two following questions: (1) How do we efficiently generate a feasible contact sequence? and (2) How do we efficiently generate contact sequences which lead to dynamically-robust motions? For the first question, we propose a library-based method that retrieves motion plans from a library constructed offline, and adapts them with local trajectory optimization to generate the full motion plan from the start to the goal. This approach outperforms a conventional graph search contact planner when it is difficult to decide which contact is preferable with a simplified robot model and local environment information. We also propose a learning approach to estimate the difficulty to traverse a certain region based on the environment features. By integrating the two approaches, we propose a planning framework that uses graph search planner to find contact sequences around easy regions. When it is necessary to go through a difficult region, the framework switches to use the library-based method around the region to find a feasible contact sequence faster. For the second question, we consider dynamic motions in contact planning. Most humanoid motion generators do not optimize the dynamic robustness of a contact sequence. By querying a learned model to predict the dynamic feasibility and robustness of each contact transition from a centroidal dynamics optimizer, the proposed planner efficiently finds contact sequences which lead to dynamically-robust motions. We also propose a learning-based footstep planner which takes external disturbances into account. The planner considers not only the poses of the planned contact sequence, but also alternative contacts near the planned contact sequence that can be used to recover from external disturbances. Neural networks are trained to efficiently predict multi-contact zero-step and one-step capturability, which allows the planner to generate contact sequences robust to external disturbances efficiently.PHDRoboticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162908/1/linyuchi_1.pd
    corecore