20 research outputs found

    Bahadur Representation for U-Quantiles of Dependent Data

    Get PDF
    U-quantiles are applied in robust statistics, like the Hodges-Lehmann estimator of location for example. They have been analyzed in the case of independent random variables with the help of a generalized Bahadur representation. Our main aim is to extend these results to U-quantiles of strongly mixing random variables and functionals of absolutely regular sequences. We obtain the central limit theorem and the law of the iterated logarithm for U-quantiles as straightforward corollaries. Furthermore, we improve the existing result for sample quantiles of mixing data

    Bahadur representation for U-Quantiles of dependent data

    Get PDF
    U-quantiles are applied in robust statistics, like the Hodges-Lehmann estimator of location for example. They have been analyzed in the case of independent random variables with the help of a generalized Bahadur representation. Our main aim is to extend these results to U-quantiles of strongly mixing random variables and functionals of absolutely regular sequences. We obtain the central limit theorem and the law of the iterated logarithm for U-quantiles as straightforward corollaries. Furthermore, we improve the existing result for sample quantiles of mixing data

    Studentized U-quantile processes under dependence with applications to change-point analysis

    Get PDF
    Many popular robust estimators are UU-quantiles, most notably the Hodges-Lehmann location estimator and the QnQ_n scale estimator. We prove a functional central limit theorem for the sequential UU-quantile process without any moment assumptions and under weak short-range dependence conditions. We further devise an estimator for the long-run variance and show its consistency, from which the convergence of the studentized version of the sequential UU-quantile process to a standard Brownian motion follows. This result can be used to construct CUSUM-type change-point tests based on UU-quantiles, which do not rely on bootstrapping procedures. We demonstrate this approach in detail at the example of the Hodges-Lehmann estimator for robustly detecting changes in the central location. A simulation study confirms the very good robustness and efficiency properties of the test. Two real-life data sets are analyzed

    Noncentral limit theorem and the bootstrap for quantiles of dependent data

    Get PDF
    We will show under minimal conditions on differentiability and dependence that the central limit theorem for quantiles holds and that the block bootstrap is weakly consistent. Under slightly stronger conditions, the bootstrap is strongly consistent. Without the differentiability condition, quantiles might have a non-normal asymptotic distribution and the bootstrap might fail

    Asymptotics of the two-stage spatial sign correlation

    Get PDF
    Acknowledgments This research was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. The authors wish to thank the editors and referees for their careful handling of the manuscript. They further acknowledge the anonymous referees of the article Spatial sign correlation (J. Multivariate Anal. 135, pages 89–105, 2015), who independently of each other suggested to further explore the properties of two-stage spatial sign correlation.Non peer reviewedPreprin

    U-Processes, U-Quantile Processes and Generalized Linear Statistics of Dependent Data

    Get PDF
    Generalized linear statistics are an unifying class that contains U-statistics, U-quantiles, L-statistics as well as trimmed and winsorized U-statistics. For example, many commonly used estimators of scale fall into this class. GL-statistics only have been studied under independence; in this paper, we develop an asymptotic theory for GL-statistics of sequences which are strongly mixing or L^1 near epoch dependent on an absolutely regular process. For this purpose, we prove an almost sure approximation of the empirical U-process by a Gaussian process. With the help of a generalized Bahadur representation, it follows that such a strong invariance principle also holds for the empirical U-quantile process and consequently for GL-statistics. We obtain central limit theorems and laws of the iterated logarithm for U-processes, U-quantile processes and GL-statistics as straightforward corollaries.Comment: 24 page
    corecore