3,299 research outputs found

    Effects of propidium monoazide (PMA) treatment on mycobiome and bacteriome analysis of cystic fibrosis airways during exacerbation

    Get PDF
    Introduction and Purpose : Propidium monoazide (PMA)-pretreatment has increasingly been applied to remove the bias from dead or damaged cell artefacts, which could impact the microbiota analysis by high-throughput sequencing. Our study aimed to determine whether a PMA-pretreatment coupled with high-throughput sequencing analysis provides a different picture of the airway mycobiome and bacteriome. Results and Discussion : We compared deep-sequencing data of mycobiota and microbiota of 15 sputum samples from 5 cystic fibrosis (CF) patients with and without prior PMA-treatment of the DNA-extracts. PMA-pretreatment had no significant effect on the entire and abundant bacterial community (genera expressed as operational taxonomic units (OTUs) with a relative abundance greater than or equal to 1%), but caused a significant difference in the intermediate community (less than 1%) when analyzing the alpha biodiversity Simpson index (p = 0.03). Regarding PMA impact on the airway mycobiota evaluated for the first time here; no significant differences in alpha diversity indexes between PMA-treated and untreated samples were observed. Regarding beta diversity analysis, the intermediate communities also differed more dramatically than the total and abundant ones when studying both mycobiome and bacteriome. Our results showed that only the intermediate (or low abundance) population diversity is impacted by PMA-treatment, and therefore that abundant taxa are mostly viable during acute exacerbation in CF. Given such a cumbersome protocol (PMA-pretreatment coupled with high-throughput sequencing), we discuss its potential interest within the follow-up of CF patients. Further studies using PMA-pretreatment are warranted to improve our "omic" knowledge of the CF airways

    Honey bee bacteriome in agricultural and pristine environments

    Get PDF
    [EN] In order to get new information about the effect that agricultural environments and beekeeping practices have on the microbiota of honey bees and its implications on honey bee health, different samples of the hive (gut, pollen bread, brood, air from inside the colony, microorganisms stuck to the entrance of the hive, etc.) were collected from two apiaries: one located in a pristine island with virtually no inhabitants and not managed in any way, and the other one located in a completely agricultural environment with a commercial management. DNA from this samples was extracted and a fragment of the ribosomal gene 16S rRNA (universal for the detection of prokaryotes) was amplified and sequenced, in order to perform a comparative characterization of the bacteriome in each location. The results obtained in this study provide a better understanding of the effect that agriculture and beekeeping practices have on the bacteriome of different parts of the hive, which may give us new insights into how to keep and improve honey bee health, possibly through the integrated management of honey bee microbial systems

    Molecular Taxonomic Profiling of Bacterial Communities in a Gilthead Seabream (Sparus aurata) Hatchery

    Get PDF
    As wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early-(2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.for ScienPortuguese Foundation ce and Technology [PTDC/MAR/112792/2009, UID/Multi/04326/2013, UID/BIO/04565/2013]; Programa Operacional Regional de Lisboa [007317]info:eu-repo/semantics/publishedVersio

    Reproducible protocols for metagenomic analysis of human faecal phageomes

    Get PDF
    peer-reviewedAll sequence data used in the analyses were deposited in the Sequence read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA407341. Sample IDs, meta data and corresponding accession numbers are summarised in Additional file 2: Table S2. All raw count tables, 16S taxonomic assignments, BLAST top hits for viral contigs and R code used for the analysis are available at (https://figshare.com/s/71163558b4f78e3e7ed6).Background Recent studies have demonstrated that the human gut is populated by complex, highly individual and stable communities of viruses, the majority of which are bacteriophages. While disease-specific alterations in the gut phageome have been observed in IBD, AIDS and acute malnutrition, the human gut phageome remains poorly characterised. One important obstacle in metagenomic studies of the human gut phageome is a high level of discrepancy between results obtained by different research groups. This is often due to the use of different protocols for enriching virus-like particles, nucleic acid purification and sequencing. The goal of the present study is to develop a relatively simple, reproducible and cost-efficient protocol for the extraction of viral nucleic acids from human faecal samples, suitable for high-throughput studies. We also analyse the effect of certain potential confounding factors, such as storage conditions, repeated freeze-thaw cycles, and operator bias on the resultant phageome profile. Additionally, spiking of faecal samples with an exogenous phage standard was employed to quantitatively analyse phageomes following metagenomic sequencing. Comparative analysis of phageome profiles to bacteriome profiles was also performed following 16S rRNA amplicon sequencing. Results Faecal phageome profiles exhibit an overall greater individual specificity when compared to bacteriome profiles. The phageome and bacteriome both exhibited moderate change when stored at + 4 °C or room temperature. Phageome profiles were less impacted by multiple freeze-thaw cycles than bacteriome profiles, but there was a greater chance for operator effect in phageome processing. The successful spiking of faecal samples with exogenous bacteriophage demonstrated large variations in the total viral load between individual samples. Conclusions The faecal phageome sequencing protocol developed in this study provides a valuable additional view of the human gut microbiota that is complementary to 16S amplicon sequencing and/or metagenomic sequencing of total faecal DNA. The protocol was optimised for several confounding factors that are encountered while processing faecal samples, to reduce discrepancies observed within and between research groups studying the human gut phageome. Rapid storage, limited freeze-thaw cycling and spiking of faecal samples with an exogenous phage standard are recommended for optimum results

    Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis

    Get PDF
    Bronchiectasis is a disease associated with chronic progressive and irreversible dilatation of the bronchi and is characterised by chronic infection and associated inflammation. The prevalence of bronchiectasis is age-related and there is some geographical variation in incidence, prevalence and clinical features. Most bronchiectasis is reported to be idiopathic however post-infectious aetiologies dominate across Asia especially secondary to tuberculosis. Most focus to date has been on the study of airway bacteria, both as colonisers and causes of exacerbations. Modern molecular technologies including next generation sequencing (NGS) have become invaluable tools to identify microorganisms directly from sputum and which are difficult to culture using traditional agar based methods. These have provided important insight into our understanding of emerging pathogens in the airways of people with bronchiectasis and the geographical differences that occur. The contribution of the lung microbiome, its ethnic variation, and subsequent roles in disease progression and response to therapy across geographic regions warrant further investigation. This review summarises the known geographical differences in the aetiology, epidemiology and microbiology of bronchiectasis. Further, we highlight the opportunities offered by emerging molecular technologies such as -omics to further dissect out important ethnic differences in the prognosis and management of bronchiectasis.NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Published versio
    corecore