280,516 research outputs found
Immobilization of Motile Bacterial Cells via Dip-pen Nanolithography
A strategy to bind bacterial cells to surfaces in a directed fashion via dip-pen nanolithography (DPN) is presented. Cellular attachment to pre-designed DPN generated microarrays was found to be dependent on the shape and size of the surface feature. While this observation is likely due in part to a dense, well formed mercaptohexadecanoic acid (MHA) monolayer generated via DPN, it may also simply be due to the physical shape of the surface structure. Motile Pseudomonas aeruginosa bacterial cells were observed to bind to DPN generated mercaptohexadecanoic acid/poly-L-lysine (MHA/PLL) line patterns, \u27blocks\u27 made up of eight lines with 100 nm spacings, with ~ 80% occupancy. Cellular binding to these \u27block\u27 surface structures occurs via an electrostatic interaction between negatively charged groups on the bacterial cell surface and positively charged poly-L-lysine (PLL) assemblies. These data indicate that these DPN generated \u27block\u27 surface structures provide a promising footprint for the attachment of motile bacterial cells that may find utility in cell based biosensors or single cell studies
Ontological representation of CDC Active Bacterial Core Surveillance Case Reports
The Center for Disease Control and Prevention’s Active Bacterial Core Surveillance (CDC ABCs) Program is a collaborative effort betweeen the CDC, state health departments, laboratories, and universities to track invasive bacterial pathogens of particular importance to public health [1]. The year-end surveillance reports produced by this program help to shape public policy and coordinate responses to emerging infectious diseases over time. The ABCs case report form (CRF) data represents an excellent opportunity for data reuse beyond the original surveillance purposes
Modelling of surfactant-driven front instabilities in spreading bacterial colonies
The spreading of bacterial colonies at solid-air interfaces is determined by
the physico-chemical properties of the involved interfaces. The production of
surfactant molecules by bacteria is a widespread strategy that allows the
colony to efficiently expand over the substrate. On the one hand, surfactant
molecules lower the surface tension of the colony, effectively increasing the
wettability of the substrate, which facilitates spreading. On the other hand,
gradients in the surface concentration of surfactant molecules result in
Marangoni flows that drive spreading. These flows may cause an instability of
the circular colony shape and the subsequent formation of fingers. In this
work, we study the effect of bacterial surfactant production and substrate
wettability on colony growth and shape within the framework of a hydrodynamic
thin film model. We show that variations in the wettability and surfactant
production are sufficient to reproduce four different types of colony growth,
which have been described in the literature, namely, arrested and continuous
spreading of circular colonies, slightly modulated front lines and the
formation of pronounced fingers
Isolation of Local Lipolytic Isolate from Domestic Compost
Screening of lipolytic bacteria from domestic compost resulting an isolate namely AL17. Morphological analysis shows that the isolates were rod shape and belong to negative gram bacteria. The 16S rRNAs genes of the bacteria have been sequenced, and phylogenetic analysis showed that the isolates were close to genus Pseudoxanthomonas. The enzyme production was synchronized with bacterial growth and reached a maximum level during the late-stationary phase. The optimum pH and temperature of enzyme activity were at pH 9.0 and 60°C.The isolate also showed alcohol tolerance in medium containing 3% and 5% methanol. The ability of bacterial cells to tolerate methanol is an important cell characteristic that determines their use as a biocatalyst in transesterification and other industrial process
Receptor uptake arrays for vitamin B12, siderophores and glycans shape bacterial communities
Molecular variants of vitamin B12, siderophores and glycans occur. To take up
variant forms, bacteria may express an array of receptors. The gut microbe
Bacteroides thetaiotaomicron has three different receptors to take up variants
of vitamin B12 and 88 receptors to take up various glycans. The design of
receptor arrays reflects key processes that shape cellular evolution.
Competition may focus each species on a subset of the available nutrient
diversity. Some gut bacteria can take up only a narrow range of carbohydrates,
whereas species such as B.~thetaiotaomicron can digest many different complex
glycans. Comparison of different nutrients, habitats, and genomes provide
opportunity to test hypotheses about the breadth of receptor arrays. Another
important process concerns fluctuations in nutrient availability. Such
fluctuations enhance the value of cellular sensors, which gain information
about environmental availability and adjust receptor deployment. Bacteria often
adjust receptor expression in response to fluctuations of particular
carbohydrate food sources. Some species may adjust expression of uptake
receptors for specific siderophores. How do cells use sensor information to
control the response to fluctuations? That question about regulatory wiring
relates to problems that arise in control theory and artificial intelligence.
Control theory clarifies how to analyze environmental fluctuations in relation
to the design of sensors and response systems. Recent advances in deep learning
studies of artificial intelligence focus on the architecture of regulatory
wiring and the ways in which complex control networks represent and classify
environmental states. I emphasize the similar design problems that arise in
cellular evolution, control theory, and artificial intelligence. I connect
those broad concepts to testable hypotheses for bacterial uptake of B12,
siderophores and glycans.Comment: Added many new references, edited throughou
Discrete elastic model for stretching-induced flagellar polymorphs
Force-induced reversible transformations between coiled and normal polymorphs
of bacterial flagella have been observed in recent optical-tweezer experiment.
We introduce a discrete elastic rod model with two competing helical states
governed by a fluctuating spin-like variable that represents the underlying
conformational states of flagellin monomers. Using hybrid Brownian dynamics
Monte-Carlo simulations, we show that a helix undergoes shape transitions
dominated by domain wall nucleation and motion in response to externally
applied uniaxial tension. A scaling argument for the critical force is
presented in good agreement with experimental and simulation results.
Stretching rate-dependent elasticity including a buckling instability are
found, also consistent with the experiment
- …
