7,314 research outputs found
Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)
Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation
The aim of the present work was to increase bacterial adhesion on anode via inducing membrane modifications to enhance textile wastewater treatment in Microbial Fuel Cell (MFC). Real textile wastewater was used in mediator-less MFCs for bacterial enrichment. The enriched bacteria were pre-treated by exposure to 1 KGy gamma radiation and were tested in MFC setup. Bacterial cell membrane permeability and cell membrane charges were measured using noninvasive dielectric spectroscopy measurements. The results show that pre-treatment using gamma radiation resulted in biofilm formation and increased cell permeability and exopolysaccharide production; this was reflected in both MFC performance (average voltage 554.67 mV) and decolorization (96.42%) as compared to 392.77 mV and 60.76% decolorization for non-treated cells. At the end of MFC operation, cytotoxicity test was performed for treated wastewater using a dermal cell line, the results obtained show a decrease in toxicity from 24.8 to 0 (v/v%) when cells were exposed to gamma radiation. Fourier-transform infrared (FTIR) spectroscopy showed an increase in exopolysaccharides in bacterial consortium exposed to increasing doses of gamma radiation suggesting that gamma radiation increased exopolysaccharide production, providing transient media for electron transfer and contributing to accelerating MFC performance. Modification of bacterial membrane prior to MFC operation can be considered highly effective as a pre-treatment tool that accelerates MFC performance
Application of mechanically alloyed Mn-Al metallic particles to wastewater treatment: a comparative investigation of chemical and bacterial approaches to dye degradation in residual textile waters
Peer ReviewedPostprint (author's final draft
Biological Agents of Bioremediation: A Concise Review
Due to intensive agriculture, rapid industrialization and anthropogenic activities have caused environmental pollution, land degradation and increased pressure on the natural resources and contributing to their adulteration. Bioremediation is the use of biological organisms to destroy, or reduce the hazardous wastes on a contaminated site. Bioremediation is the most potent management tool to control the environmental pollution and recover contaminated soil. Use of biological materials, coupled to other advanced processes is one of the most promising and inexpensive approaches for removing environmental pollutants. Bioremediation technology is a beneficial alternative which leads to degrade of pollutants. This article presents the important biological organisms used in bioremediation technologies
Synthetic dye decolorization by three sources of fungal laccase
Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%), commassie brilliant blue (91%), panseu-S (56%), Rimazol brilliant blue R (RBBR; 47%), Congo red (18.5%), and methylene blue (21.3%) after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM) as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93%) in absence of HBT after 3 h incubation. © 2012 Forootanfar et al.; licensee BioMed Central Ltd
Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes
Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reac-tive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaero-philic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies
A review on the present situation of wastewater treatment in textile industry with membrane bioreactor and moving bed biofilm reactor
Membrane bioreactor (MBR) is one of the advanced treatment technologies used in industrial wastewater treatment due to its various advantages over conventional biological processes. Recently, the application of MBR in treatment of textile wastewater has increased significantly with an effective removal of contaminants. Moving bed bioreactor (MBBR) has been efficiently used for the treatment of different municipal and industrial wastewater during the last decades and it is a relatively novel and effective technology applied in textile wastewater treatment. This review paper presents the situation of MBR and MBBR technology for textile wastewater purification under different conditions and collates results of previous studies during the past years about MBR and MBBR treatment technologies used in textile processes. Both of these two technologies have shown their efficiency, but they still have problems in textile wastewater treatment. To this end, MBR-MBBR hybrid system could be an attractive solution for textile wastewater purification because of the high efficiency and low consumption of energy and spacePostprint (author's final draft
DECOLORIZATION OF ORANGE 16 BY BACTERIA
Joint Research on Environmental Science and Technology for the Eart
Genome Sequences for Three Strains of Kocuria rosea, Including the Type Strain
Genomes from three strains of Kocuria rosea were sequenced. K. rosea ATCC 186, the type strain, was 3,958,612 bp in length with a total G+C content of 72.70%. When assembled, K. rosea ATCC 516 was 3,862,128 bp with a 72.82% G+C content. K. rosea ATCC 49321 was 4,018,783 bp in size with a 72.49% G+C content
DECOLORIZATION OF AZO DYES BY PURPLE NON-SULFUR BACTERIA
Joint Research on Environmental Science and Technology for the Eart
- …
