5 research outputs found

    Behavioural Economics: Classical and Modern

    Get PDF
    In this paper, the origins and development of behavioural economics, beginning with the pioneering works of Herbert Simon (1953) and Ward Edwards (1954), is traced, described and (critically) discussed, in some detail. Two kinds of behavioural economics – classical and modern – are attributed, respectively, to the two pioneers. The mathematical foundations of classical behavioural economics is identified, largely, to be in the theory of computation and computational complexity; the corresponding mathematical basis for modern behavioural economics is, on the other hand, claimed to be a notion of subjective probability (at least at its origins in the works of Ward Edwards). The economic theories of behavior, challenging various aspects of 'orthodox' theory, were decisively influenced by these two mathematical underpinnings of the two theoriesClassical Behavioural Economics, Modern Behavioural Economics, Subjective Probability, Model of Computation, Computational Complexity. Subjective Expected Utility

    Translating extensive form games to open games with agency

    Get PDF
    We show open games cover extensive form games with both perfect and imperfect information. Doing so forces us to address two current weaknesses in open games: the lack of a notion of player and their agency within open games, and the lack of choice operators. Using the former we construct the latter, and these choice operators subsume previous proposed operators for open games, thereby making progress towards a core, canonical and ergonomic calculus of game operators. Collectively these innovations increase the level of compositionality of open games, and demonstrate their expressiveness

    Towards foundations of categorical cybernetics

    Get PDF
    We propose a categorical framework for processes which interact bidirectionally with both an environment and a ‘controller’. Examples include open learners, in which the controller is an optimiser such as gradient descent, and an approach to compositional game theory closely related to open games, in which the controller is a composite of game-theoretic agents. We believe that ‘cybernetic’ is an appropriate name for the processes that can be described in this framework

    Backward Induction for Repeated Games

    No full text
    We present a method of backward induction for computing approximate subgame perfect Nash equilibria of infinitely repeated games with discounted payoffs. This uses the selection monad transformer, combined with the searchable set monad viewed as a notion of ‘topologically compact’ nondeterminism, and a simple model of computable real numbers. This is the first application of Escard ´o and Oliva’s theory of higher-order sequential games to games of imperfect information, in which (as well as its mathematical elegance) lazy evaluation does nontrivial work for us compared with a traditional game-theoretic analysis. Since a full theoretical understanding of this method is lacking (and appears to be very hard), we consider this an ‘experimental’ paper heavily inspired by theoretical ideas. We use the famous Iterated Prisoner’s Dilemma as a worked example

    Backward Induction for Repeated Games

    No full text
    We present a method of backward induction for computing approximate subgame perfect Nash equilibria of infinitely repeated games with discounted payoffs. This uses the selection monad transformer, combined with the searchable set monad viewed as a notion of ‘topologically compact’ nondeterminism, and a simple model of computable real numbers. This is the first application of Escard ´o and Oliva’s theory of higher-order sequential games to games of imperfect information, in which (as well as its mathematical elegance) lazy evaluation does nontrivial work for us compared with a traditional game-theoretic analysis. Since a full theoretical understanding of this method is lacking (and appears to be very hard), we consider this an ‘experimental’ paper heavily inspired by theoretical ideas. We use the famous Iterated Prisoner’s Dilemma as a worked example
    corecore