35,166 research outputs found

    Investigation of Geant4 Simulation of Electron Backscattering

    Full text link
    A test of Geant4 simulation of electron backscattering recently published in this journal prompted further investigation into the causes of the observed behaviour. An interplay between features of geometry and physics algorithms implemented in Geant4 is found to significantly affect the accuracy of backscattering simulation in some physics configurations

    Non-perturbative approach to backscattering off a dynamical impurity in 1D Fermi systems

    Get PDF
    We investigate the problem of backscattering off a time-dependent impurity in a one-dimensional electron gas. By combining the Schwinger-Keldysh method with an adiabatic approximation in order to deal with the corresponding out of equilibrium Dirac equation, we compute the total energy density (TED) of the system. We show how the free fermion TED is distorted by the backscattering amplitude and the geometry of the impurity.Comment: 5 pages, 2 figures, RevTex4. Appendix and some text added. Results and conclusions did not change. Version accepted for publication in Phys. Rev.

    Decay of a plasmon into neutral modes in a carbon nanotube

    Full text link
    We evaluate the rate of energy loss of a plasmon in a disorder-free carbon nanotube. The plasmon decays into neutral bosonic excitations of the electron liquid. The process is mediated either by phonon-assisted backscattering of a single electron, or Umklapp backscattering of two electrons. To lowest order in the backscattering interactions the partial decay rates are additive. At zero doping the corresponding decay rates scale as power-laws of the temperature with positive and negative exponents for the two mechanisms, respectively. The precise values of the exponents depend on the Luttinger liquid parameter. At finite doping the decay rates are described by universal crossover functions of frequency and chemical potential measured in units of temperature. In the evaluation of the plasmon decay, we concentrate on a finite-length geometry allowing excitation of plasma resonances.Comment: 10 pages, 4 figure

    Magnetic Field Enhanced Coherence Length in Cold Atomic Gases

    Get PDF
    We study the effect of an external magnetic field on coherent backscattering of light from a cool rubidium vapor. We observe that the backscattering enhancement factor can be {\it increased} with BB. This surprising behavior shows that the coherence length of the system can be increased by applying a magnetic field, in sharp contrast with ususal situations. This is mainly due to the lifting of the degeneracy between Zeeman sublevels. We find good agreement between our experimental data and a full Monte-Carlosimulation, taking into account the magneto-optical effects and the geometry of the atomic cloud

    Quantitative Test of the Evolution of Geant4 Electron Backscattering Simulation

    Full text link
    Evolutions of Geant4 code have affected the simulation of electron backscattering with respect to previously published results. Their effects are quantified by analyzing the compatibility of the simulated electron backscattering fraction with a large collection of experimental data for a wide set of physics configuration options available in Geant4. Special emphasis is placed on two electron scattering implementations first released in Geant4 version 10.2: the Goudsmit-Saunderson multiple scattering model and a single Coulomb scattering model based on Mott cross section calculation. The new Goudsmit-Saunderson multiple scattering model appears to perform equally or less accurately than the model implemented in previous Geant4 versions, depending on the electron energy. The new Coulomb scattering model was flawed from a physics point of view, but computationally fast in Geant4 version 10.2; the physics correction released in Geant4 version 10.2p01 severely degrades its computational performance. Evolutions in the Geant4 geometry domain have addressed physics problems observed in electron backscattering simulation in previous publications.Comment: To be published in IEEE Trans. Nucl. Sc

    Mossbauer spectrometer radiation detector

    Get PDF
    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided

    Observation of coherent backscattering of light by cold atoms

    Full text link
    Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light by cold atoms.Comment: 25 pages LaTex2e, 17 figures, submitted to J. Opt. B: Quant. Semicl. Op

    Magnetotransport in disordered two-dimensional topological insulators: signatures of charge puddles

    Get PDF
    In this numerical study we investigate the influence and interplay of disorder, spin-orbit coupling and magnetic field on the edge-transport in HgTe/CdTe quantum wells in the framework of coherent elastic scattering. We show that the edge states remain unaffected by the combined effect of moderate disorder and a weak magnetic field at realistic spin-orbit coupling strengths. Agreement with the experimentally observed linear magnetic field dependence for the conductance of long samples is obtained when considering the existence of charge puddles.Comment: 17 pages, 6 figure

    Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates

    Full text link
    Electromagnetic wave scattering from planar dielectric films deposited on one-dimensional, randomly rough, perfectly conducting substrates is studied by numerical simulations for both p- and s-polarization. The reduced Rayleigh equation, which is the integral equation satisfied by the scattering amplitude after eliminating the fields inside the film, is the starting point for the simulation. This equation is solved numerically by considering a random surface of finite length, and by introducing wave number cut-offs in the evanescent part of the spectrum. Upon discretization, a system of linear equations is obtained, and by solving this matrix system for an ensemble of surface realizations, the contribution to the mean differential reflection coefficient from the incoherently scattered field, <Rν/θ>incoh<\partial R_\nu/\partial \theta>_{incoh} (\nu=p,s), is obtained nonperturbatively. It is demonstrated that when the scattering geometry supports at least two guided waves, incoh_{incoh}, has, in addition to the well known enhanced backscattering peak, well-defined satellite peaks in agreement with theory, for most of the parameters considered.Comment: 11 pages and 11 figure
    corecore