3,870 research outputs found

    Energy-Aware Wireless Relay Selection in Load-Coupled OFDMA Cellular Networks

    Full text link
    We investigate transmission energy minimization via optimizing wireless relay selection in orthogonal-frequency-division multiple access (OFDMA) networks. We take into account the impact of the load of cells on transmission energy. We prove the NP-hardness of the energy-aware wireless relay selection problem. To tackle the computational complexity, a partial optimality condition is derived for providing insights in respect of designing an effective and efficient algorithm. Numerical results show that the resulting algorithm achieves high energy performance.Comment: 4 pages, 2 figure

    Analysis of Massive MIMO-Enabled Downlink Wireless Backhauling for Full-Duplex Small Cells

    Full text link
    Using tools from stochastic geometry, we develop a framework to model the downlink rate coverage probability of a user in a given small cell network (SCN) with massive MIMO-enabled wireless backhauls. The considered SCN is composed of a mixture of small cells that are configured in either in-band or out-of-band backhaul modes with a certain probability. The performance of the user in the considered hierarchical network is limited by several sources of interference such as the backhaul interference, small cell base station (SBS)-to-SBS interference and the SI. Moreover, due to the channel hardening effect in massive MIMO, the backhaul links experience long term channel effects only, whereas the access links experience both the long term and short term channel effects. Consequently, the developed framework is flexible to characterize different sources of interference while capturing the heterogeneity of the access and backhaul channels. In specific scenarios, the framework enables deriving closed-form coverage probability expressions. Under perfect backhaul coverage, the simplified expressions are utilized to optimize the proportion of in-band and out-of-band small cells in the SCN in closed-form. Finally, few remedial solutions are proposed that can potentially mitigate the backhaul interference and in turn improve the performance of in-band FD wireless backhauling. Numerical results investigate the scenarios in which in-band wireless backhauling is useful and demonstrate that maintaining a correct proportion of in-band and out-of-band FD small cells is crucial in wireless backhauled SCNs.Comment: 15 pages, 7 figures, IEEE Transactions on Communication

    Dynamic Bandwidth Allocation in Heterogeneous OFDMA-PONs Featuring Intelligent LTE-A Traffic Queuing

    Get PDF
    This work was supported by the ACCORDANCE project, through the 7th ICT Framework Programme. This is an Accepted Manuscript of an article accepted for publication in Journal of Lightwave Technology following peer review. © 2014 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A heterogeneous, optical/wireless dynamic bandwidth allocation framework is presented, exhibiting intelligent traffic queuing for practically controlling the quality-of-service (QoS) of mobile traffic, backhauled via orthogonal frequency division multiple access–PON (OFDMA-PON) networks. A converged data link layer is presented between long term evolution-advanced (LTE-A) and next-generation passive optical network (NGPON) topologies, extending beyond NGPON2. This is achieved by incorporating in a new protocol design, consistent mapping of LTE-A QCIs and OFDMA-PON queues. Novel inter-ONU algorithms have been developed, based on the distribution of weights to allocate subcarriers to both enhanced node B/optical network units (eNB/ONUs) and residential ONUs, sharing the same infrastructure. A weighted, intra-ONU scheduling mechanism is also introduced to control further the QoS across the network load. The inter and intra-ONU algorithms are both dynamic and adaptive, providing customized solutions to bandwidth allocation for different priority queues at different network traffic loads exhibiting practical fairness in bandwidth distribution. Therefore, middle and low priority packets are not unjustifiably deprived in favor of high priority packets at low network traffic loads. Still the protocol adaptability allows the high priority queues to automatically over perform when the traffic load has increased and the available bandwidth needs to be rationally redistributed. Computer simulations have confirmed that following the application of adaptive weights the fairness index of the new scheme (representing the achieved throughput for each queue), has improved across the traffic load to above 0.9. Packet delay reduction of more than 40ms has been recorded as a result for the low priority queues, while high priories still achieve sufficiently low packet delays in the range of 20 to 30msPeer reviewe

    Competitive Assessments for HAP Delivery of Mobile Services in Emerging Countries

    Full text link
    In recent years, network deployment based on High Altitude Platforms (HAPs) has gained momentum through several initiatives where air vehicles and telecommunications payloads have been adapted and refined, resulting in more efficient and less expensive platforms. In this paper, we study HAP as an alternative or complementary fast-evolving technology to provide mobile services in rural areas of emerging countries, where business models need to be carefully tailored to the reality of their related markets. In these large areas with low user density, mobile services uptake is likely to be slowed by a service profitability which is in turn limited by a relatively low average revenue per user. Through three architectures enabling different business roles and using different terrestrial, HAP and satellite backhaul solutions, we devise how to use in an efficient and profitable fashion these multi-purpose aerial platforms, in complement to existing access and backhauling satellite or terrestrial technologies
    corecore