2,488 research outputs found

    Bayesian nonparametric models for peak identification in MALDI-TOF mass spectroscopy

    Full text link
    We present a novel nonparametric Bayesian approach based on L\'{e}vy Adaptive Regression Kernels (LARK) to model spectral data arising from MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time-of-Flight) mass spectrometry. This model-based approach provides identification and quantification of proteins through model parameters that are directly interpretable as the number of proteins, mass and abundance of proteins and peak resolution, while having the ability to adapt to unknown smoothness as in wavelet based methods. Informative prior distributions on resolution are key to distinguishing true peaks from background noise and resolving broad peaks into individual peaks for multiple protein species. Posterior distributions are obtained using a reversible jump Markov chain Monte Carlo algorithm and provide inference about the number of peaks (proteins), their masses and abundance. We show through simulation studies that the procedure has desirable true-positive and false-discovery rates. Finally, we illustrate the method on five example spectra: a blank spectrum, a spectrum with only the matrix of a low-molecular-weight substance used to embed target proteins, a spectrum with known proteins, and a single spectrum and average of ten spectra from an individual lung cancer patient.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS450 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Bayesian Modeling of Dynamic Scenes for Object Detection

    Get PDF
    Abstract—Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes. Index Terms—Object detection, kernel density estimation, joint domain range, MAP-MRF estimation. æ
    • …
    corecore