38,119 research outputs found

    Measurement of radon concentrations at Super-Kamiokande

    Full text link
    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m3^3.Comment: 11 pages, 4 figure

    Radon mitigation during the installation of the CUORE 0νββ0\nu\beta\beta decay detector

    Full text link
    CUORE - the Cryogenic Underground Observatory for Rare Events - is an experiment searching for the neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 130^{130}Te with an array of 988 TeO2_2 crystals operated as bolometers at \sim10 mK in a large dilution refrigerator. With this detector, we aim for a 130^{130}Te 0νββ0\nu\beta\beta decay half-life sensitivity of 9×10259\times10^{25} y with 5 y of live time, and a background index of 102\lesssim 10^{-2} counts/keV/kg/y. Making an effort to maintain radiopurity by minimizing the bolometers' exposure to radon gas during their installation in the cryostat, we perform all operations inside a dedicated cleanroom environment with a controlled radon-reduced atmosphere. In this paper, we discuss the design and performance of the CUORE Radon Abatement System and cleanroom, as well as a system to monitor the radon level in real time.Comment: 10 pages, 6 figures, 1 tabl

    The imprint of thermally induced devolatilization phenomena on radon signal. Implications for the geochemical survey in volcanic areas

    Get PDF
    Thermal gradients due to magma dynamics in active volcanic areas may affect the emanating power of the substrate and the background level of radon signal. This is particularly effective in subvolcanic substrates where intense hydrothermal alteration and/or weathering processes generally form hydrous minerals, such as zeolites able to store and release great amounts of H2O (up to ∼25 wt.%) at relative low temperatures. To better understand the role played by thermally induced devolatilization reactions on the radon signal, a new experimental setup has been developed for measuring in real time the radon emission from a zeolitized volcanic tuff. Progressive dehydration phenomena with increasing temperature produce radon emissions two orders of magnitude higher than those measured during rock deformation, microfracturing and failure. In this framework, mineral devolatilization reactions can contribute significantly to produce radon emissions spatially heterogeneous and non-stationary in time, resulting in a transient state dictated by temperature gradients and the carrier effects of subsurface gases. Results from these experiments can be extrapolated to the temporal and spatial scales of magmatic processes, where the ascent of small magma batches from depth causes volatile release due to dehydration phenomena that increase the radon signal from the degassing host rock material

    Radon background in liquid xenon detectors

    Full text link
    The radioactive daughters isotope of 222Rn are one of the highest risk contaminants in liquid xenon detectors aiming for a small signal rate. The noble gas is permanently emanated from the detector surfaces and mixed with the xenon target. Because of its long half-life 222Rn is homogeneously distributed in the target and its subsequent decays can mimic signal events. Since no shielding is possible this background source can be the dominant one in future large scale experiments. This article provides an overview of strategies used to mitigate this source of background by means of material selection and on-line radon removal techniques

    A Review and Outlook for the Removal of Radon-Generated Po-210 Surface Contamination

    Full text link
    The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The deposition and presence of radon progeny on detector surfaces is an added source of energetic background events. In addition to limiting the detector material's radon exposure in order to reduce potential surface backgrounds, it is just as important to clean surfaces to remove inevitable contamination. Such studies of radon progeny removal have generally found that a form of etching is effective at removing some of the progeny (Bi and Pb), however more aggressive techniques, including electropolishing, have been shown to effectively remove the Po atoms. In the absence of an aggressive etch, a significant fraction of the Po atoms are believed to either remain behind within the surface or redeposit from the etching solution back onto the surface. We explore the chemical nature of the aqueous Po ions and the effect of the oxidation state of Po to maximize the Po ions remaining in the etching solution of contaminated Cu surfaces. We present a review of the previous studies of surface radon progeny removal and our findings on the role of oxidizing agents and a cell potential in the preparation of a clean etching technique.Comment: Proceedings of the Low Radioactivity Techniques (LRT) 2017, Seoul, South Korea, May 24-26, 201
    corecore