99,306 research outputs found

    Investigation into Mobile Learning Framework in Cloud Computing Platform

    Get PDF
    Abstract—Cloud computing infrastructure is increasingly used for distributed applications. Mobile learning applications deployed in the cloud are a new research direction. The applications require specific development approaches for effective and reliable communication. This paper proposes an interdisciplinary approach for design and development of mobile applications in the cloud. The approach includes front service toolkit and backend service toolkit. The front service toolkit packages data and sends it to a backend deployed in a cloud computing platform. The backend service toolkit manages rules and workflow, and then transmits required results to the front service toolkit. To further show feasibility of the approach, the paper introduces a case study and shows its performance

    ObliviSync: Practical Oblivious File Backup and Synchronization

    Get PDF
    Oblivious RAM (ORAM) protocols are powerful techniques that hide a client's data as well as access patterns from untrusted service providers. We present an oblivious cloud storage system, ObliviSync, that specifically targets one of the most widely-used personal cloud storage paradigms: synchronization and backup services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This setting provides a unique opportunity because the above privacy properties can be achieved with a simpler form of ORAM called write-only ORAM, which allows for dramatically increased efficiency compared to related work. Our solution is asymptotically optimal and practically efficient, with a small constant overhead of approximately 4x compared with non-private file storage, depending only on the total data size and parameters chosen according to the usage rate, and not on the number or size of individual files. Our construction also offers protection against timing-channel attacks, which has not been previously considered in ORAM protocols. We built and evaluated a full implementation of ObliviSync that supports multiple simultaneous read-only clients and a single concurrent read/write client whose edits automatically and seamlessly propagate to the readers. We show that our system functions under high work loads, with realistic file size distributions, and with small additional latency (as compared to a baseline encrypted file system) when paired with Dropbox as the synchronization service.Comment: 15 pages. Accepted to NDSS 201

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703
    corecore