391,732 research outputs found
Training a Feed-forward Neural Network with Artificial Bee Colony Based Backpropagation Method
Back-propagation algorithm is one of the most widely used and popular
techniques to optimize the feed forward neural network training. Nature
inspired meta-heuristic algorithms also provide derivative-free solution to
optimize complex problem. Artificial bee colony algorithm is a nature inspired
meta-heuristic algorithm, mimicking the foraging or food source searching
behaviour of bees in a bee colony and this algorithm is implemented in several
applications for an improved optimized outcome. The proposed method in this
paper includes an improved artificial bee colony algorithm based
back-propagation neural network training method for fast and improved
convergence rate of the hybrid neural network learning method. The result is
analysed with the genetic algorithm based back-propagation method, and it is
another hybridized procedure of its kind. Analysis is performed over standard
data sets, reflecting the light of efficiency of proposed method in terms of
convergence speed and rate.Comment: 14 Pages, 11 figure
Alternating Back-Propagation for Generator Network
This paper proposes an alternating back-propagation algorithm for learning
the generator network model. The model is a non-linear generalization of factor
analysis. In this model, the mapping from the continuous latent factors to the
observed signal is parametrized by a convolutional neural network. The
alternating back-propagation algorithm iterates the following two steps: (1)
Inferential back-propagation, which infers the latent factors by Langevin
dynamics or gradient descent. (2) Learning back-propagation, which updates the
parameters given the inferred latent factors by gradient descent. The gradient
computations in both steps are powered by back-propagation, and they share most
of their code in common. We show that the alternating back-propagation
algorithm can learn realistic generator models of natural images, video
sequences, and sounds. Moreover, it can also be used to learn from incomplete
or indirect training data
Recommended from our members
Texture features based microscopic image classification of liver cellular granuloma using artificial neural networks
Automated classification of Schistosoma mansoni granulomatous microscopic images of mice liver using Artificial Intelligence (AI) technologies is a key issue for accurate diagnosis and treatment. In this paper, three grey difference statistics-based features, namely three Gray-Level Co-occurrence Matrix (GLCM) based features and fifteen Gray Gradient Co-occurrence Matrix (GGCM) features were calculated by correlative analysis. Ten features were selected for three-level cellular granuloma classification using a Scaled Conjugate Gradient Back-Propagation Neural Network (SCG-BPNN) in the same performance. A cross-entropy is then calculated to evaluate the proposed Sigmoid input and the ten-hidden layer network. The results depicted that SCG-BPNN with texture features performs high recognition rate compared to using morphological features, such as shape, size, contour, thickness and other geometry-based features for the classification. The proposed method also has a high accuracy rate of 87.2% compared to the Back-Propagation Neural Network (BPNN), Back-Propagation Hopfield Neural Network (BPHNN) and Convolutional Neural Network (CNN)
Predicting Phishing Websites using Neural Network trained with Back-Propagation
Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates
- …
