45,379 research outputs found

    On the Maximal Excess Charge of the Chandrasekhar-Coulomb Hamiltonian in Two Dimensions

    Full text link
    We show that for the straightforward quantized relativistic Coulomb Hamiltonian of a two-dimensional atom -- or the corresponding magnetic quantum dot -- the maximal number of electrons does not exceed twice the nuclear charge. It result is then generalized to the presence of external magnetic fields and atomic Hamiltonians. This is based on the positivity of |\bx| T(\bp) + T(\bp) |\bx| which -- in two dimensions -- is false for the non-relativistic case T(\bp) = \bp^2, but is proven in this paper for T(\bp) = |\bp|, i.e., the ultra-relativistic kinetic energy

    Hidden variable theories and quantum nonlocality

    Get PDF
    We clarify the meaning of Bell's theorem and its implications for the construction of hidden variable theories by considering an example system consisting of two entangled spin-1/2 particles. Using this example, we present a simplified version of Bell's theorem and describe several hidden variable theories that agree with the predictions of quantum mechanics. These example theories clarify some subtle points, which are often misunderstood, regarding what it is that Bell's theorem actually establishes

    Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator

    Full text link
    We control quantum fluctuations to create the ground state magnetic phases of a classical Ising model with a tunable longitudinal magnetic field using a system of 6 to 10 atomic ion spins. Due to the long-range Ising interactions, the various ground state spin configurations are separated by multiple first-order phase transitions, which in our zero temperature system cannot be driven by thermal fluctuations. We instead use a transverse magnetic field as a quantum catalyst to observe the first steps of the complete fractal devil's staircase, which emerges in the thermodynamic limit and can be mapped to a large number of many-body and energy-optimization problems.Comment: New data in Fig. 3, and much of the paper rewritte
    corecore