45,379 research outputs found
On the Maximal Excess Charge of the Chandrasekhar-Coulomb Hamiltonian in Two Dimensions
We show that for the straightforward quantized relativistic Coulomb
Hamiltonian of a two-dimensional atom -- or the corresponding magnetic quantum
dot -- the maximal number of electrons does not exceed twice the nuclear
charge. It result is then generalized to the presence of external magnetic
fields and atomic Hamiltonians. This is based on the positivity of |\bx|
T(\bp) + T(\bp) |\bx| which -- in two dimensions -- is false for the
non-relativistic case T(\bp) = \bp^2, but is proven in this paper for T(\bp)
= |\bp|, i.e., the ultra-relativistic kinetic energy
Hidden variable theories and quantum nonlocality
We clarify the meaning of Bell's theorem and its implications for the construction of hidden variable theories by considering an example system consisting of two entangled spin-1/2 particles. Using this example, we present a simplified version of Bell's theorem and describe several hidden variable theories that agree with the predictions of quantum mechanics. These example theories clarify some subtle points, which are often misunderstood, regarding what it is that Bell's theorem actually establishes
Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator
We control quantum fluctuations to create the ground state magnetic phases of
a classical Ising model with a tunable longitudinal magnetic field using a
system of 6 to 10 atomic ion spins. Due to the long-range Ising interactions,
the various ground state spin configurations are separated by multiple
first-order phase transitions, which in our zero temperature system cannot be
driven by thermal fluctuations. We instead use a transverse magnetic field as a
quantum catalyst to observe the first steps of the complete fractal devil's
staircase, which emerges in the thermodynamic limit and can be mapped to a
large number of many-body and energy-optimization problems.Comment: New data in Fig. 3, and much of the paper rewritte
- …
