55,389 research outputs found
Slepian-Wolf Coding for Broadcasting with Cooperative Base-Stations
We propose a base-station (BS) cooperation model for broadcasting a discrete
memoryless source in a cellular or heterogeneous network. The model allows the
receivers to use helper BSs to improve network performance, and it permits the
receivers to have prior side information about the source. We establish the
model's information-theoretic limits in two operational modes: In Mode 1, the
helper BSs are given information about the channel codeword transmitted by the
main BS, and in Mode 2 they are provided correlated side information about the
source. Optimal codes for Mode 1 use \emph{hash-and-forward coding} at the
helper BSs; while, in Mode 2, optimal codes use source codes from Wyner's
\emph{helper source-coding problem} at the helper BSs. We prove the optimality
of both approaches by way of a new list-decoding generalisation of [8, Thm. 6],
and, in doing so, show an operational duality between Modes 1 and 2.Comment: 16 pages, 1 figur
Discovery of Carbon/Oxygen depleted Blue Straggler Stars in 47 Tucanae: the chemical signature of a mass-transfer formation process
We use high-resolution spectra obtained with the ESO Very Large Telescope to
measure surface abundance patterns of 43 Blue Stragglers stars (BSS) in 47 Tuc.
We discovered that a sub-population of BSS shows a significant depletion of
Carbon and Oxygen with respect to the dominant population. This evidence would
suggest the presence of CNO burning products on the BSS surface coming from a
deeply peeled parent star, as expected in the case of mass-transfer process.
This is the first detection of a chemical signature clearly pointing to a
specific BSS formation process in a globular cluster.Comment: Published on 2006, August 10, in ApJ 647, L5
Coverage and Rate Analysis for Unmanned Aerial Vehicle Base Stations with LoS/NLoS Propagation
The use of unmanned aerial vehicle base stations (UAV-BSs) as airborne base
stations has recently gained great attention. In this paper, we model a network
of UAV-BSs as a Poisson point process (PPP) operating at a certain altitude
above the ground users. We adopt an air-to-ground (A2G) channel model that
incorporates line-of-sight (LoS) and non-line-of-sight (NLoS) propagation.
Thus, UAV-BSs can be decomposed into two independent inhomogeneous PPPs. Under
the assumption that NLoS and LoS channels experience Rayleigh and Nakagami-m
fading, respectively, we derive approximations for the coverage probability and
average achievable rate, and show that these approximations match the
simulations with negligible errors. Numerical simulations have shown that the
coverage probability and average achievable rate decrease as the height of the
UAV-BSs increases
Using state space differential geometry for nonlinear blind source separation
Given a time series of multicomponent measurements of an evolving stimulus,
nonlinear blind source separation (BSS) seeks to find a "source" time series,
comprised of statistically independent combinations of the measured components.
In this paper, we seek a source time series with local velocity cross
correlations that vanish everywhere in stimulus state space. However, in an
earlier paper the local velocity correlation matrix was shown to constitute a
metric on state space. Therefore, nonlinear BSS maps onto a problem of
differential geometry: given the metric observed in the measurement coordinate
system, find another coordinate system in which the metric is diagonal
everywhere. We show how to determine if the observed data are separable in this
way, and, if they are, we show how to construct the required transformation to
the source coordinate system, which is essentially unique except for an unknown
rotation that can be found by applying the methods of linear BSS. Thus, the
proposed technique solves nonlinear BSS in many situations or, at least,
reduces it to linear BSS, without the use of probabilistic, parametric, or
iterative procedures. This paper also describes a generalization of this
methodology that performs nonlinear independent subspace separation. In every
case, the resulting decomposition of the observed data is an intrinsic property
of the stimulus' evolution in the sense that it does not depend on the way the
observer chooses to view it (e.g., the choice of the observing machine's
sensors). In other words, the decomposition is a property of the evolution of
the "real" stimulus that is "out there" broadcasting energy to the observer.
The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see
http://www.geocities.com/dlevin2001/ . New version is identical to original
version except for URL in the bylin
Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity
Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal ratio and ECD fitting showed that higher values of metallic interference produced highly scattered dipoles. Results revealed a significant reduction on dispersion using the BSS-based reduction procedure, yielding feasible locations of ECDs in contrast to the other two approaches. Significance. The automatic BSS-based method can be applied to MEG datasets affected by metallic artifacts as a processing step to improve the localization of epileptic foci.Postprint (published version
- …
