70,486 research outputs found
Blood Oxygenation Level-Dependent MRI to Assess Renal Oxygenation in Renal Diseases: Progresses and Challenges.
BOLD-MRI (blood oxygenation-level dependent magnetic resonance imaging) allows non-invasive measurement of renal tissue oxygenation in humans, without the need for contrast products. BOLD-MRI uses the fact that magnetic properties of hemoglobin depend of its oxygenated state:: the higher local deoxyhemoglobin, the higher the so called apparent relaxation rate R2(*) (sec(-1)), and the lower local tissue oxygen content. Several factors other than deoxyhemoglobin (such as hydration status, dietary sodium intake, and susceptibility effects) influence the BOLD signal, and need to be taken into account when interpreting results. The last 5 years have witnessed important improvements in the standardization of these factors, and the appearance of new, highly reproducible analysis techniques of BOLD-images, that are reviewed in this article. Using these new BOLD-MRI analysis techniques, it has recently been shown that persons suffering from chronic kidney diseases (CKD) have lower cortical oxygenation than normotensive controls, thus confirming the chronic hypoxia hypothesis. The acute alterations in R2(*) after the administration of furosemide are smaller in CKD, and represent an estimate of the oxygen-dependent tubular transport of sodium. BOLD-MRI-alone or in combination with other functional MRI methods- can be used to monitor the renal effects of drugs, and is increasingly used in the preclinical setting. The near future will tell whether or not BOLD-MRI represents a new tool to predict renal function decline an adverse renal outcome
Functional MRI during hippocampal deep brain stimulation in the healthy rat brain
Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS
Noninvasive evaluation of renal tissue oxygenation with blood oxygen level-dependent magnetic resonance imaging early after transplantation has a limited predictive value for the delayed graft function
Purpose: The aim of this study was to evaluate the feasibility of renal oxygenation assessment using blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in the early period after kidney transplantation and to estimate its prognostic value for delayed graft function. Material and methods: Examinations were performed in 50 subjects: 40 patients within a week after the kidney transplantation and 10 healthy controls, using T2*-weighted sequence. Measurements in transplant patients were correlated to basic laboratory parameters in the early period after transplantation and at follow-up. Results: Examinations of seven patients (18%) were rejected due to their poor technical quality. Mean R2* values in transplant recipients were lower than in controls (11.6 vs. 15.9 Hz; p = 0.0001). An R2* value of 0.28 Hz was calculated as the minimal detectable change. There was no relation between R2* values and laboratory parameters. However, patients eGFR ≥ 40 ml/min/1.73 m2 presented higher R2* values than recipients eGFR 0.7). Conclusions: Evaluation of renal graft oxygenation using BOLD MRI is technically challenging in the early period after transplantation. An R2* value of 0.28 Hz may in practice be considered as the minimal detectable change. The delayed graft function seems not to be dependent on early oxygenation values. Further, large-scale studies are necessary to confirm the latter observation
Recommended from our members
The role of HG in the analysis of temporal iteration and interaural correlation
EEG–fMRI of idiopathic and secondarily generalized epilepsies
We used simultaneous EEG and functional MRI (EEG–fMRI) to study generalized spike wave activity (GSW) in idiopathic and secondary generalized epilepsy (SGE). Recent studies have demonstrated thalamic and cortical fMRI signal changes in association with GSW in idiopathic generalized epilepsy (IGE). We report on a large cohort of patients that included both IGE and SGE, and give a functional interpretation of our findings. Forty-six patients with GSW were studied with EEG–fMRI; 30 with IGE and 16 with SGE. GSW-related BOLD signal changes were seen in 25 of 36 individual patients who had GSW during EEG–fMRI. This was seen in thalamus (60%) and symmetrically in frontal cortex (92%), parietal cortex (76%), and posterior cingulate cortex/precuneus (80%). Thalamic BOLD changes were predominantly positive and cortical changes predominantly negative. Group analysis showed a negative BOLD response in the cortex in the IGE group and to a lesser extent a positive response in thalamus. Thalamic activation was consistent with its known role in GSW, and its detection in individual cases with EEG–fMRI may in part be related to the number and duration of GSW epochs recorded. The spatial distribution of the cortical fMRI response to GSW in both IGE and SGE involved areas of association cortex that are most active during conscious rest. Reduction of activity in these regions during GSW is consistent with the clinical manifestation of absence seizures
Long-term vascular access ports as a means of sedative administration in a rodent fMRI survival model
The purpose of this study is to develop a rodent functional magnetic resonance imaging (fMRI) survival model with the use of heparin-coated vascular access devices. Such a model would ease the administration of sedative agents, reduce the number of animals required in survival experiments and eliminate animal-to-animal variability seen in previous designs. Seven male Sprague-Dawley rats underwent surgical placement of an MRI-compatible vascular access port, followed by implantable electrode placement on the right median nerve. Functional MRI during nerve stimulation and resting-state functional connectivity MRI (fcMRI) were performed at times 0, 2, 4, 8 and 12 weeks postoperatively using a 9.4 T scanner. Anesthesia was maintained using intravenous dexmedetomidine and reversed using atipamezole. There were no fatalities or infectious complications during this study. All vascular access ports remained patent. Blood oxygen level dependent (BOLD) activation by electrical stimulation of the median nerve using implanted electrodes was seen within the forelimb sensory region (S1FL) for all animals at all time points. The number of activated voxels decreased at time points 4 and 8 weeks, returning to a normal level at 12 weeks, which is attributed to scar tissue formation and resolution around the embedded electrode. The applications of this experiment extend far beyond the scope of peripheral nerve experimentation. These vascular access ports can be applied to any survival MRI study requiring repeated medication administration, intravenous contrast, or blood sampling
Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging
The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data
- …
