29,944 research outputs found

    Ferroelectric Dead Layer Driven by a Polar Interface

    Get PDF
    Based on first-principles and model calculations we investigate the effect of polar interfaces on the ferroelectric stability of thin-film ferroelectrics. As a representative model, we consider a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces that serve as doping layers. We find that the polar interfaces create an intrinsic electric field that is screened by the electron charge leaking into the BaTiO3 layer. The amount of the leaking charge is controlled by the boundary conditions which are different for three heterostructures considered, namely Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and SrRuO3/LaO/BaTiO3/LaO. The intrinsic electric field forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. Our first-principles and model calculations demonstrate that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric field that penetrates deeper into the ferroelectric. The predicted mechanism for a ferroelectric dead layer at the interface controls the critical thickness for ferroelectricity in systems with polar interfaces.Comment: 33 Pages, 5 figure

    Study of orientation effect on nanoscale polarization in BaTiO3 thin films using piezoresponse force microscopy

    Get PDF
    We have investigated the effect of texture on in-plane (IPP) and out- of plane (OPP) polarizations of pulsed-laser-deposited BaTiO3 thin films grown on Pt and La0.5Sr0.5CoO3 (LSCO) buffered Pt electrodes. The OPP and IPP polarizations were observed by piezoresponse force microscopy (PFM) for three-dimensional polarization analyses in conjunction with conventional diffraction methods using x-ray diffraction and reflection high energy electron diffraction measurements. BaTiO3 films grown on Pt electrodes exhibited highly (101) preferred orientation with higher IPP component whereas BaTiO3 film grown on LSCO/Pt electrodes showed (001) and (101) orientations with higher OPP component. Measured effective d(33) values of BaTiO3 films deposited on Pt and LSCO/ Pt electrodes were 14.3 and 54.0 pm/ V, respectively. Local piezoelectric strain loops obtained by OPP and IPP-PFM showed that piezoelectric properties were strongly related to film orientation

    Spin singlet small bipolarons in Nb-doped BaTiO3

    Full text link
    The magnetic susceptibility and electrical resistivity of n-type BaTi{1-x}Nb{x}O3 have been measured over a wide temperature range. It is found that, for 0 < x < 0.2, dopant electrons form immobile spin singlet small bipolarons with binding energy around 110 meV. For x = 0.2, a maximum in the electrical resistivity around 15 K indicates a crossover from band to hopping transport of the charge carriers, a phenomenon expected but rarely observed in real polaronic systems.Comment: 5 pages, 4 figure

    Efficacy of the DFT+U formalism for modeling hole polarons in perovskite oxides

    Full text link
    We investigate the formation of self-trapped holes (STH) in three prototypical perovskites (SrTiO3, BaTiO3, PbTiO3) using a combination of density functional theory (DFT) calculations with local potentials and hybrid functionals. First we construct a local correction potential for polaronic configurations in SrTiO3 that is applied via the DFT+U method and matches the forces from hybrid calculations. We then use the DFT+U potential to search the configuration space and locate the lowest energy STH configuration. It is demonstrated that both the DFT+U potential and the hybrid functional yield a piece-wise linear dependence of the total energy on the occupation of the STH level suggesting that self-interaction effects have been properly removed. The DFT+U model is found to be transferable to BaTiO3 and PbTiO3, and formation energies from DFT+U and hybrid calculations are in close agreement for all three materials. STH formation is found to be energetically favorable in SrTiO3 and BaTiO3 but not in PbTiO3, which can be rationalized by considering the alignment of the valence band edges on an absolute energy scale. In the case of PbTiO3 the strong coupling between Pb 6s and O 2p states lifts the valence band minimum (VBM) compared to SrTiO3 and BaTiO3. This reduces the separation between VBM and STH level and renders the STH configuration metastable with respect to delocalization (band hole state). We expect that the present approach can be adapted to study STH formation also oxides with different crystal structures and chemical composition.Comment: 7 pages, 6 figure

    Influence of magnetic field and ferromagnetic film thickness on domain pattern transfer in multiferroic heterostructures

    Full text link
    Domains in BaTiO3_3 induces a regular modulation of uniaxial magnetic anisotropy in CoFeB via an inverse magnetostriction effect. As a result, the domain structures of the CoFeB wedge film and BaTiO3_3 substrate correlate fully and straight ferroelectric domain boundaries in BaTiO3_3 pin magnetic domain walls in CoFeB. We use x-ray photoemission electron microscopy and magneto-optical Kerr effect microscopy to characterize the spin structure of the pinned domain walls. In a rotating magnetic field, abrupt and reversible transitions between two domain wall types occur, namely, narrow walls where the magnetization vectors align head-to-tail and much broader walls with alternating head-to-head and tail-to-tail magnetization configurations. We characterize variations of the domain wall spin structure as a function of magnetic field strength and CoFeB film thickness and compare the experimental results with micromagnetic simulations.Comment: 5 pages, 5 figure

    Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory

    Full text link
    The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is generally necessary to distinguish between elastic tensors defined under different electrostatic boundary conditions, and between dielectric tensors defined under different elastic boundary conditions. Here, we describe an approach for computing all of these various response tensors in a unified and systematic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm

    Electron localization : band-by-band decomposition, and application to oxides

    Full text link
    Using a plane wave pseudopotential approach to density functional theory we investigate the electron localization length in various oxides. For this purpose, we first set up a theory of the band-by-band decomposition of this quantity, more complex than the decomposition of the spontaneous polarization (a related concept), because of the interband coupling. We show its interpretation in terms of Wannier functions and clarify the effect of the pseudopotential approximation. We treat the case of different oxides: BaO, α\alpha-PbO, BaTiO3_3 and PbTiO3_3. We also investigate the variation of the localization tensor during the ferroelectric phase transitions of BaTiO3_3 as well as its relationship with the Born effective charges

    High-pressure study of X-ray diffuse scattering in ferroelectric perovskites

    Full text link
    We present a high-pressure x-ray diffuse scattering study of the ABO3_3 ferroelectric perovskites BaTiO_3 and KNbO_3. The well-known diffuse lines are observed in all the phases studied. In KNbO_3, we show that the lines are present up to 21.8 GPa, with constant width and a slightly decreasing intensity. At variance, the intensity of the diffuse lines observed in the cubic phase of BaTiO_3 linearly decreases to zero at 11\sim 11 GPa. These results are discussed with respect to x-ray absorption measurements, which leads to the conclusion that the diffuse lines are only observed when the B atom is off the center of the oxygen tetrahedron. The role of such disorder on the ferroelectric instability of perovskites is discussed.Comment: 4 pages, Accepted in PR
    corecore