580,400 research outputs found
Audio Set classification with attention model: A probabilistic perspective
This paper investigates the classification of the Audio Set dataset. Audio
Set is a large scale weakly labelled dataset of sound clips. Previous work used
multiple instance learning (MIL) to classify weakly labelled data. In MIL, a
bag consists of several instances, and a bag is labelled positive if at least
one instances in the audio clip is positive. A bag is labelled negative if all
the instances in the bag are negative. We propose an attention model to tackle
the MIL problem and explain this attention model from a novel probabilistic
perspective. We define a probability space on each bag, where each instance in
the bag has a trainable probability measure for each class. Then the
classification of a bag is the expectation of the classification output of the
instances in the bag with respect to the learned probability measure.
Experimental results show that our proposed attention model modeled by fully
connected deep neural network obtains mAP of 0.327 on Audio Set dataset,
outperforming the Google's baseline of 0.314 and recurrent neural network of
0.325.Comment: Accepted by ICASSP 201
Soliton solutions of the improved quark mass density-dependent model at finite temperature
The improved quark mass density-dependent model (IQMDD) based on soliton bag
model is studied at finite temperature. Appling the finite temperature field
theory, the effective potential of the IQMDD model and the bag constant
have been calculated at different temperatures. It is shown that there is a
critical temperature . We also calculate the
soliton solutions of the IQMDD model at finite tmperature. It turns out that
when , there is a bag constant and the soliton solutions are
stable. However, when the bag constant and there is no
soliton solution, therefore, the confinement of quarks are removed quickly.Comment: 10 pages, 9 figures; Version to appear in Physical Review
A dynamical chiral bag model
We study a dynamical chiral bag model, in which massless fermions are
confined within an impenetrable but movable bag coupled to meson fields. The
self-consistent motion of the bag is obtained by solving the equations of
motion exactly assuming spherical symmetry. When the bag interacts with an
external meson wave we find three different kinds of resonances: {\it
fermionic}, {\it geometric}, and -resonances. We discuss the
phenomenological implications of our results.Comment: Two columns, 11 pages, 9 figures. Submitted to Physical Review
A relativistic model for Strange Quark Star
We propose a spherically symmetric and anisotropic model for strange quark
stars within the framework of MIT Bag model. Though the model is found to
comply with all the physical requirements of a realistic star satisfying a
strange matter equation of state (EOS), the estimated values the Bag constant
for different strange star candidates like Her X-1, SAX J 1808.4-3658 and 4U
1820-30, clearly indicate that the Bag constant need not necessarily lie within
the range of 60-80 MeV fm as claimed in the literature.Comment: 12 pages, 6 figures. Major revision has been don
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
Short-range quark-quark correlations in hot nuclear matter are examined
within the modified quark-meson coupling model (MQMC) by adding repulsive
scalar and vector quark-quark interactions. Without these correlations, the bag
radius increases with the baryon density. However when the correlations are
introduced the bag size shrinks as the bags overlap. Also as the strength of
the scalar quark-quark correlation is increased, the decrease of the effective
nucleon mass with the baryonic density is slowed down and tends to
saturate at high densities. Within this model we study the phase transition
from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the
latter modeled as an ideal gas of quarks and gluons inside a bag. Two models
for the QGP bag parameter are considered. In one case, the bag is taken to be
medium-independent and the phase transition from the hadron phase to QGP is
found to occur at 5-8 times ordinary nuclear matter density for temperatures
less than 60 MeV. For lower densities, the transition takes place at higher
temperature reaching up to 130 MeV at zero density. In the second case, the QGP
bag parameter is considered medium-dependent as in the MQMC model for the
hadronic phase. In this case, it is found that the phase transition occurs at
much lower densities.Comment: 8 pages, latex, 4 eps figure
A dynamical, confining model and hot quark stars
We explore the consequences of an equation of state (EOS) obtained in a
confining Dyson-Schwinger equation model of QCD for the structure and stability
of nonstrange quark stars at finite-T, and compare the results with those
obtained using a bag-model EOS. Both models support a temperature profile that
varies over the star's volume and the consequences of this are model
independent. However, in our model the analogue of the bag pressure is
(T,mu)-dependent, which is not the case in the bag model. This is a significant
qualitative difference and comparing the results effects a primary goal of
elucidating the sensitivity of quark star properties to the form of the EOS.Comment: 13 pages, 5 figures, epsfig.sty, elsart.sty. Shortened version to
appear in Phys. Lett. B, qualitatively unmodifie
- …
