644 research outputs found

    Continuous-Domain Solutions of Linear Inverse Problems with Tikhonov vs. Generalized TV Regularization

    Get PDF
    We consider linear inverse problems that are formulated in the continuous domain. The object of recovery is a function that is assumed to minimize a convex objective functional. The solutions are constrained by imposing a continuous-domain regularization. We derive the parametric form of the solution (representer theorems) for Tikhonov (quadratic) and generalized total-variation (gTV) regularizations. We show that, in both cases, the solutions are splines that are intimately related to the regularization operator. In the Tikhonov case, the solution is smooth and constrained to live in a fixed subspace that depends on the measurement operator. By contrast, the gTV regularization results in a sparse solution composed of only a few dictionary elements that are upper-bounded by the number of measurements and independent of the measurement operator. Our findings for the gTV regularization resonates with the minimization of the l1l_1 norm, which is its discrete counterpart and also produces sparse solutions. Finally, we find the experimental solutions for some measurement models in one dimension. We discuss the special case when the gTV regularization results in multiple solutions and devise an algorithm to find an extreme point of the solution set which is guaranteed to be sparse

    Bayesian Estimation for Continuous-Time Sparse Stochastic Processes

    Full text link
    We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools from the theory of splines, we derive the joint a priori distribution of the samples and show how this probability density function can be factorized. The factorization enables us to tractably implement the maximum a posteriori and minimum mean-square error (MMSE) criteria as two statistical approaches for estimating the unknowns. We compare the derived statistical methods with well-known techniques for the recovery of sparse signals, such as the â„“1\ell_1 norm and Log (â„“1\ell_1-â„“0\ell_0 relaxation) regularization methods. The simulation results show that, under certain conditions, the performance of the regularization techniques can be very close to that of the MMSE estimator.Comment: To appear in IEEE TS

    Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems

    Get PDF
    This paper deals with the resolution of inverse problems in a periodic setting or, in other terms, the reconstruction of periodic continuous-domain signals from their noisy measurements. We focus on two reconstruction paradigms: variational and statistical. In the variational approach, the reconstructed signal is solution to an optimization problem that establishes a tradeoff between fidelity to the data and smoothness conditions via a quadratic regularization associated to a linear operator. In the statistical approach, the signal is modeled as a stationary random process defined from a Gaussian white noise and a whitening operator; one then looks for the optimal estimator in the mean-square sense. We give a generic form of the reconstructed signals for both approaches, allowing for a rigorous comparison of the two.We fully characterize the conditions under which the two formulations yield the same solution, which is a periodic spline in the case of sampling measurements. We also show that this equivalence between the two approaches remains valid on simulations for a broad class of problems. This extends the practical range of applicability of the variational method

    Polychromatic X-ray CT Image Reconstruction and Mass-Attenuation Spectrum Estimation

    Full text link
    We develop a method for sparse image reconstruction from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident-energy spectrum are unknown. We obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace integral form. The mass-attenuation spectrum is then expanded into first order B-spline basis functions. We derive a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood (NLL) cost function, where penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map. The image sparsity is imposed using total-variation (TV) and â„“1\ell_1 norms, applied to the density-map image and its discrete wavelet transform (DWT) coefficients, respectively. This algorithm alternates between Nesterov's proximal-gradient (NPG) and limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) steps for updating the image and mass-attenuation spectrum parameters. To accelerate convergence of the density-map NPG step, we apply a step-size selection scheme that accounts for varying local Lipschitz constant of the NLL. We consider lognormal and Poisson noise models and establish conditions for biconvexity of the corresponding NLLs. We also prove the Kurdyka-{\L}ojasiewicz property of the objective function, which is important for establishing local convergence of the algorithm. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme

    On the Uniqueness of Inverse Problems with Fourier-domain Measurements and Generalized TV Regularization

    Full text link
    We study the super-resolution problem of recovering a periodic continuous-domain function from its low-frequency information. This means that we only have access to possibly corrupted versions of its Fourier samples up to a maximum cut-off frequency. The reconstruction task is specified as an optimization problem with generalized total-variation regularization involving a pseudo-differential operator. Our special emphasis is on the uniqueness of solutions. We show that, for elliptic regularization operators (e.g., the derivatives of any order), uniqueness is always guaranteed. To achieve this goal, we provide a new analysis of constrained optimization problems over Radon measures. We demonstrate that either the solutions are always made of Radon measures of constant sign, or the solution is unique. Doing so, we identify a general sufficient condition for the uniqueness of the solution of a constrained optimization problem with TV-regularization, expressed in terms of the Fourier samples.Comment: 20 page
    • …
    corecore