88,635 research outputs found

    Atomic and electronic structure of nitrogen- and boron-doped phosphorene

    Full text link
    First principle modeling of nitrogen- and boron-doped phosphorene demonstrates the tendency toward formation of highly ordered structures. Nitrogen doping leads to the formation of -N-P-P-P-N- lines. Further transformation to -P-N-P-N- lines across the chains of phosphorene occurs with increasing band gap and increasing nitrogen concentration, which coincides with the decreasing chemical activity of N-doped phosphorene. In contrast to the case of nitrogen, boron atoms prefer to form -B-B- pairs with the further formation of -P-P-B-B-P-P- patterns along the phosphorene chains. The low concentration of boron dopants converts the phosphorene from a semiconductor into a semimetal with the simultaneous enhancement of its chemical activity. Co-doping of phosphorene by both boron and nitrogen starts from the formation of -B-N- pairs, which provide flat bands and the further transformation of these pairs to hexagonal BN lines and ribbons across the phosphorene chains.Comment: 21 pages, 8 figures, 2 tables, to appear at PCC

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Stochastic Heterostructures in B/N-Doped Carbon Nanotubes

    Full text link
    Carbon nanotubes are one-dimensional and very narrow. These obvious facts imply that under doping with boron and nitrogen, microscopic doping inhomogeneity is much more important than for bulk semiconductors. We consider the possibility of exploiting such fluctuations to create interesting devices. Using self-consistent tight-binding (SCTB), we study heavily doped highly compensated nanotubes, revealing the spontaneous formation of structures resembling chains of random quantum dots, or nano-scale diode-like elements in series. We also consider truly isolated impurities, revealing simple scaling properties of bound state sizes and energies.Comment: 4 pages RevTeX, 4 PostScript figure

    Boron Abundances in Main Sequence B-type Stars: A Test of Rotational Depletion during Main Sequence Evolution

    Get PDF
    Boron abundances have been derived for seven main sequence B-type stars from HST STIS spectra around the B III 2066 A line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but it is clearly depleted. In the other four stars, boron is undetectable implying depletions of 1 to 2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. Also, several boron-depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally-induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron-group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near solar iron-group abundances, as expected for young stars in the solar neighborhood. We have also analysed the halo B-type star, PG0832+676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H]<2.5. These and other published abundances are used to infer the star's evolutionary status as a post-AGB star.Comment: 31 pages, 14 figures. accepted to Ap

    Electronic Properties of Boron and Nitrogen doped graphene: A first principles study

    Full text link
    Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. Upon co-doping of graphene by B and N, the energy gap between valence and conduction bands appears at Fermi level and the system behaves as narrow gap semiconductor. Obtained results are found to be in well agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re

    Photoluminescence of hexagonal boron nitride: effect of surface oxidation under UV-laser irradiation

    Full text link
    We report on the UV laser induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation of the surface under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono (VN), or multiple (m-VN with m = 2 or 3) nitrogen vacancies. A structured fluorescence band between 300 nm and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to VN vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ~400 nm assigned to m-VN vacancies; further irradiation breaks more B-N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation of the oxide layer prevents B-N dissociation and preserves the bulk sample stoichiometry

    g-B3N3C: a novel two-dimensional graphite-like material

    Get PDF
    A novel crystalline structure of hybrid monolayer hexagonal boron nitride (BN) and graphene is predicted by means of the first-principles calculations. This material can be derived via boron or nitrogen atoms substituted by carbon atoms evenly in the graphitic BN with vacancies. The corresponding structure is constructed from a BN hexagonal ring linking an additional carbon atom. The unit cell is composed of 7 atoms, 3 of which are boron atoms, 3 are nitrogen atoms, and one is carbon atom. It behaves a similar space structure as graphene, which is thus coined as g-B3N3C. Two stable topological types associated with the carbon bonds formation, i.e., C-N or C-B bonds, are identified. Interestingly, distinct ground states of each type, depending on C-N or C-B bonds, and electronic band gap as well as magnetic properties within this material have been studied systematically. Our work demonstrates practical and efficient access to electronic properties of two-dimensional nanostructures providing an approach to tackling open fundamental questions in bandgap-engineered devices and spintronics.Comment: 15 pages, 6 figure

    Stability of antiphase line defects in nanometer-sized boron-nitride cones

    Full text link
    We investigate the stability of boron nitride conical sheets of nanometer size, using first-principles calculations. Our results indicate that cones with an antiphase boundary (a line defect that contains either B-B or N-N bonds) can be more stable than those without one. We also find that doping the antiphase boundaries with carbon can enhance their stability, leading also to the appearance of localized states in the bandgap. Among the structures we considered, the one with the smallest formation energy is a cone with a carbon-modified antiphase boundary that presents a spin splitting of about 0.5 eV at the Fermi level.Comment: 5 two-column pages with 2 figures Accepted for publication in Physical Review B (vol 70, 15 Nov.
    corecore