112,684 research outputs found
Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To
The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells
Taming tosyl azide: the development of a scalable continuous diazo transfer process
Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a one pot batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography
An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing
Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Orthogonal, metal-free surface modification by strain-promoted azide–alkyne and nitrile oxide–alkene/alkyne cycloadditions
In this article we present a fast and efficient methodology for biochemical surface patterning under extremely mild conditions. Micropatterned azide/benzaldoxime-surfaces were prepared by microcontact printing of a heterobifunctional cyclooctyne oxime linker on azide-terminated self-assembled monolayers (SAMs). Strain-promoted azide–alkyne cycloaddition (SPAAC) in combination with microcontact printing allows fast and effective surface patterning. The resulting bifunctional azide/oxime substrates could successfully be used for metal-free, orthogonal immobilization of various biomolecules by 1,3-dipolar cycloadditions at room temperature. Azide-decorated areas were modified by reaction with a cyclooctyne-conjugate using SPAAC, while benzaldoxime-decorated areas were activated by in situ oxidation to the reactive nitrile oxides and subsequent nitrile oxide cycloaddition with alkene- and alkyne-functionalized bioconjugates. In addition, orthogonal double immobilization was achieved by consecutive and independent SPAAC and nitrile oxide cycloadditions
Acid catalyzed reactions of alpha and beta styryl azides
Acid degradation of alpha and beta styryl azide
Compound oxidized styrylphosphine
A process is described for preparing flame resistant, nontoxic vinyl polymers which contain phosphazene groups and which do not emit any toxic or corrosive products when they are oxidatively degraded. Homopolymers, copolymers, and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer from a group of organic azides, or by polymerizing p-diphenylphosphinestyrene and then oxidizing that monomer with an organoazide from the group of (C6H5)2P(O)N3, (C6H5O)2P(O)N3, (C6H5)2C3N3(N3), and C6H5C3N3(N3)2. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer
Heat resistant polymers of oxidized styrylphosphine
Homopolymers, copolymers and terpolymers of a styrene based monomer are prepared by polymerizing at least one oxidized styrylphosphine monomer or by polymerizing p-diphenylphosphinestyrene and then oxidizing the polymerized monomer with an organoazide. Copolymers can also be prepared by copolymerizing styrene with at least one oxidized styrylphosphine monomer. Flame resistant vinyl based polymers whose degradation products are non toxic and non corrosive are obtained
- …
