6 research outputs found

    Axiomatic Characterization of the Antimedian Function on Paths and Hypercubes

    Get PDF
    An antimedian of a profile pi=(x1,x2,ldots,xk)\\pi = (x_1, x_2, \\ldots , x_k) of vertices of a graph GG is a vertex maximizing the sum of the distances to the elements of the profile. The antimedian function is defined on the set of all profiles on GG and has as output the set of antimedians of a profile. It is a typical location function for finding a location for an obnoxious facility. The `converse' of the antimedian function is the median function, where the distance sum is minimized. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper such a characterization is obtained for the two classes of graphs on which the antimedian is well-behaved: paths and hypercubes

    Axioms for consensus functions on the n-cube

    Full text link
    An elementary general result is proved that allows for simple characterizations of well-known location/consensus functions (median, mean and center) on the n-cube. In addition, alternate new characterizations are given for the median and anti-median functions on the n-cube.Comment: 12 page

    Five axioms for location functions on median graphs

    Get PDF
    __Abstract__ In previous work, two axiomatic characterizations were given for the median function on median graphs: one involving the three simple and natural axioms anonymity, betweenness and consistency; the other involving faithfulness, consistency and ½-Condorcet. To date, the independence of these axioms has not been a serious point of study. The aim of this paper is to provide the missing answers. The independent subsets of these five axioms are determined precisely and examples provided in each case on arbitrary median graphs. There are three cases that stand out. Here non-trivial examples and proofs are needed to give a full answer. Extensive use of the structure of median graphs is used throughout

    Axiomatic Characterization of the Antimedian Function on Paths and Hypercubes

    No full text
    An antimedian of a pro le = (x1; x2; : : : ; xk) of vertices of a graph G is a vertex maximizing the sum of the distances to the elements of the pro le. The antimedian function is de ned on the set of all pro les on G and has as output the set of antimedians of a pro le. It is a typical location function for nding a location for an obnoxious facility. The `converse' of the antimedian function is the median function, where the distance sum is minimized. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper such a characterization is obtained for the two classes of graphs on which the antimedian is well-behaved: paths and hypercubes.Cochin University of Science and TechnologyDiscrete Mathematics, Algorithms and Application
    corecore