9,565 research outputs found
Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family
Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent
functions. Their motor domain drives these activities but the molecular adaptations
that specify these diverse and essential cellular activities are poorly understood. It
has been assumed that the first identified kinesin - the transport motor kinesin-1 – is
the mechanistic paradigm for the entire superfamily, but accumulating evidence
suggests that this is not the case. To address the deficits in our understanding of the
molecular basis of functional divergence within the kinesin superfamily, we studied
kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division.
Using cryo-electron microscopy and subnanometer resolution structure
determination, we have visualised conformations of microtubule-bound human
kinesin-5 motor domain at successive steps in its ATPase cycle. Following ATP
hydrolysis, nucleotide-dependent conformational changes in the active site are
allosterically propagated into rotations of the motor domain and uncurling of the drugbinding
loop L5. In addition, the mechanical neck-linker element that is crucial for
motor stepping undergoes discrete, ordered displacements. We also observed large
reorientations of the motor N-terminus that indicate its importance for kinesin-5
function through control of neck-linker conformation. A kinesin-5 mutant lacking this
N-terminus is enzymatically active, and ATP-dependent neck-linker movement and
motility is defective although not ablated. All these aspects of kinesin-5
mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the
regulatory role of the kinesin-5 N-terminus in collaboration with the motor’s structured
neck-linker, and highlight the multiple adaptations within kinesin motor domains that
tune their mechanochemistries according to distinct functional requirements
Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY
Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution
Recommended from our members
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus.
Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus
Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein
Computer simulation of the
conformations of short antigenic peptides (&lo
residues) either free or bound to their receptor,
the major histocompatibility complex (MHC)-
encoded glycoprotein H-2 Ld, was employed to
explain experimentally determined differences
in the antigenic activities within a set of related
peptides. Starting for each sequence from the
most probable conformations disclosed by a
pattern-recognition technique, several energyminimized
structures were subjected to molecular
dynamics simulations (MD) either in vacuo
or solvated by water molecules. Notably, antigenic
potencies were found to correlate to the
peptides propensity to form and maintain an
overall a-helical conformation through regular
i,i + 4 hydrogen bonds. Accordingly, less active
or inactive peptides showed a strong tendency
to form i,i+3 hydrogen bonds at their Nterminal
end. Experimental data documented
that the C-terminal residue is critical for interaction
of the peptide with H-2 Ld. This finding
could be satisfactorily explained by a 3-D
Q.S.A.R. analysis postulating interactions between
ligand and receptor by hydrophobic
forces. A 3-D model is proposed for the complex
between a high-affinity nonapeptide and the H-
2 Ld receptor. First, the H-2 Ld molecule was
built from X-ray coordinates of two homologous
proteins: HLA-A2 and HLA-Aw68, energyminimized
and studied by MD simulations. With
HLA-A2 as template, the only realistic simulation
was achieved for a solvated model with minor
deviations of the MD mean structure from
the X-ray conformation. Water simulation of the
H-2 Ld protein in complex with the antigenic
nonapeptide was then achieved with the template-
derived optimal parameters. The bound
peptide retains mainly its a-helical conformation
and binds to hydrophobic residues of H-2
Ld that correspond to highly polymorphic positions
of MHC proteins. The orientation of the
nonapeptide in the binding cleft is in accordance
with the experimentally determined distribution
of its MHC receptor-binding residues
(agretope residues). Thus, computer simulation was successfully employed to explain functional
data and predicts a-helical conformation
for the bound peptid
Density Functional Theory and Molecular Dynamics Studies on Energetics and Kinetics for Electro-Active Polymers: PVDF and P(VDF-TrFE)
We use first principles methods to study static and dynamical mechanical
properties of the ferroelectric polymer Poly(vinylidene fluoride) (PVDF) and
its copolymer with trifluoro ethylene (TrFE). We use density functional theory
[within the generalized gradient approximation (DFT-GGA)] to calculate
structures and energetics for various crystalline phases for PVDF and
P(VDF-TrFE). We find that the lowest energy phase for PVDF is a non-polar
crystal with a combination of trans (T) and gauche (G) bonds; in the case of
the copolymer the role of the extra (bulkier) F atoms is to stabilize T bonds.
This leads to the higher crystallinity and piezoelectricity observed
experimentally. Using the MSXX first principles-based force field (FF) with
molecular dynamics (MD), we find that the energy barrier necessary to nucleate
a kink (gauche pairs separated by trans bonds) in an all-T crystal is much
lower (14.9 kcal/mol) in P(VDF-TrFE) copolymer than in PVDF (24.8 kcal/mol).
This correlates with the observation that the polar phase of the copolymer
exhibits a solid-solid a transition to a non-polar phase under heating while
PVDF directly melts. We also studied the mobility of an interface between a
polar and non-polar phases under uniaxial stress; we find a lower threshold
stress and a higher mobility in the copolymer as compared with PVDF. Finally,
considering plastic deformation under applied shear, we find that the chains
for P(VDF-TrFE) have a very low resistance to sliding, particularly along the
chain direction. The atomistic characterization of these "unit mechanisms"
provides essential input to mesoscopic or macroscopic models of electro-active
polymers.Comment: 15 pages 9 figures Electro-active polyme
Fundamentals of ion mobility spectrometry
Fundamental questions in ion mobility spectrometry have practical
implications for analytical applications in general, and omics in particular,
in three respects. (1) Understanding how ion mobility and collision cross
section values depend on the collision gas, on the electric field and on
temperature is crucial to ascertain their transferability across instrumental
platforms. (2) Predicting collision cross section values for new analytes is
necessary to exploit the full potential of ion mobility in discovery workflows.
(3) Finally, understanding the fate of ion structures in the gas phase is
essential to infer meaningful information on solution structures based on
gas-phase ion mobility measurements. We review here the most recent advances in
ion mobility fundamentals, relevant to these three aspects.Comment: 22 pages, 3 figures and 3 tables. Compared to the published version
and to the previous arXiv version, an error in Eq. (1) and an error in the
equation two lines below have been correcte
Structure of poly(propyl ether imine) (PETIM) dendrimer from fully atomistic molecular Dynamics Simulation and by Small Angle X-ray scattering
We study the structure of carboxylic acid terminated neutral poly (propyl
ether imine) (PETIM) dendrimer from generation 1 through 6 (G1-G6) in a good
solvent (water) by fully atomistic molecular dynamics (MD) simulations. We
determine as a function of generation such structural properties as: radius of
gyration, shape tensor, asphericity, fractal dimension, monomer density
distribution, and end-group distribution functions. The sizes obtained from the
MD simulations have been validated by Small Angle X-Ray Scattering (SAXS)
experiment on dendrimer of generation 2 to 4 (G2-G4). A good agreement between
the experimental and theoretical value of radius of gyration has been observed.
We find a linear increase in radius of gyration with the generation. In
contrast, Rg scales as ~ N^x with the number of monomers. We find two distinct
exponents depending on the generations: x = 0.47 for G1-G3 and x = 0.28 for
G3-G6 which reveals their non-space filling nature. In comparison with the
amine terminated PAMAM dendrimer, we find Rg of G-th generation PETIM dendrimer
is nearly equal to that of (G+1)-th generation of PAMAM dendrimer as observed
by Maiti et. al. [Macromolecules,38, 979 2005]. We find substantial back
folding of the outer sub generations into the interior of the dendrimer. Due to
their highly flexible nature of the repeating branch units, the shape of the
PETIM dendrimer deviates significantly from the spherical shape and the
molecules become more and more spherical as the generation increases. The
interior of the dendrimer is quite open with internal cavities available for
accommodating guest molecules suggesting using PETIM dendrimer for guest-host
applications. We also give a quantitative measure of the number of water
molecules present inside the dendrimer.Comment: 33 page
Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations
To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism
- …
