9,565 research outputs found

    Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family

    Get PDF
    Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin - the transport motor kinesin-1 – is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests that this is not the case. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and subnanometer resolution structure determination, we have visualised conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. Following ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drugbinding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N-terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N-terminus is enzymatically active, and ATP-dependent neck-linker movement and motility is defective although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N-terminus in collaboration with the motor’s structured neck-linker, and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements

    Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY

    Get PDF
    Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution

    Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein

    Get PDF
    Computer simulation of the conformations of short antigenic peptides (&lo residues) either free or bound to their receptor, the major histocompatibility complex (MHC)- encoded glycoprotein H-2 Ld, was employed to explain experimentally determined differences in the antigenic activities within a set of related peptides. Starting for each sequence from the most probable conformations disclosed by a pattern-recognition technique, several energyminimized structures were subjected to molecular dynamics simulations (MD) either in vacuo or solvated by water molecules. Notably, antigenic potencies were found to correlate to the peptides propensity to form and maintain an overall a-helical conformation through regular i,i + 4 hydrogen bonds. Accordingly, less active or inactive peptides showed a strong tendency to form i,i+3 hydrogen bonds at their Nterminal end. Experimental data documented that the C-terminal residue is critical for interaction of the peptide with H-2 Ld. This finding could be satisfactorily explained by a 3-D Q.S.A.R. analysis postulating interactions between ligand and receptor by hydrophobic forces. A 3-D model is proposed for the complex between a high-affinity nonapeptide and the H- 2 Ld receptor. First, the H-2 Ld molecule was built from X-ray coordinates of two homologous proteins: HLA-A2 and HLA-Aw68, energyminimized and studied by MD simulations. With HLA-A2 as template, the only realistic simulation was achieved for a solvated model with minor deviations of the MD mean structure from the X-ray conformation. Water simulation of the H-2 Ld protein in complex with the antigenic nonapeptide was then achieved with the template- derived optimal parameters. The bound peptide retains mainly its a-helical conformation and binds to hydrophobic residues of H-2 Ld that correspond to highly polymorphic positions of MHC proteins. The orientation of the nonapeptide in the binding cleft is in accordance with the experimentally determined distribution of its MHC receptor-binding residues (agretope residues). Thus, computer simulation was successfully employed to explain functional data and predicts a-helical conformation for the bound peptid

    Density Functional Theory and Molecular Dynamics Studies on Energetics and Kinetics for Electro-Active Polymers: PVDF and P(VDF-TrFE)

    Get PDF
    We use first principles methods to study static and dynamical mechanical properties of the ferroelectric polymer Poly(vinylidene fluoride) (PVDF) and its copolymer with trifluoro ethylene (TrFE). We use density functional theory [within the generalized gradient approximation (DFT-GGA)] to calculate structures and energetics for various crystalline phases for PVDF and P(VDF-TrFE). We find that the lowest energy phase for PVDF is a non-polar crystal with a combination of trans (T) and gauche (G) bonds; in the case of the copolymer the role of the extra (bulkier) F atoms is to stabilize T bonds. This leads to the higher crystallinity and piezoelectricity observed experimentally. Using the MSXX first principles-based force field (FF) with molecular dynamics (MD), we find that the energy barrier necessary to nucleate a kink (gauche pairs separated by trans bonds) in an all-T crystal is much lower (14.9 kcal/mol) in P(VDF-TrFE) copolymer than in PVDF (24.8 kcal/mol). This correlates with the observation that the polar phase of the copolymer exhibits a solid-solid a transition to a non-polar phase under heating while PVDF directly melts. We also studied the mobility of an interface between a polar and non-polar phases under uniaxial stress; we find a lower threshold stress and a higher mobility in the copolymer as compared with PVDF. Finally, considering plastic deformation under applied shear, we find that the chains for P(VDF-TrFE) have a very low resistance to sliding, particularly along the chain direction. The atomistic characterization of these "unit mechanisms" provides essential input to mesoscopic or macroscopic models of electro-active polymers.Comment: 15 pages 9 figures Electro-active polyme

    Fundamentals of ion mobility spectrometry

    Full text link
    Fundamental questions in ion mobility spectrometry have practical implications for analytical applications in general, and omics in particular, in three respects. (1) Understanding how ion mobility and collision cross section values depend on the collision gas, on the electric field and on temperature is crucial to ascertain their transferability across instrumental platforms. (2) Predicting collision cross section values for new analytes is necessary to exploit the full potential of ion mobility in discovery workflows. (3) Finally, understanding the fate of ion structures in the gas phase is essential to infer meaningful information on solution structures based on gas-phase ion mobility measurements. We review here the most recent advances in ion mobility fundamentals, relevant to these three aspects.Comment: 22 pages, 3 figures and 3 tables. Compared to the published version and to the previous arXiv version, an error in Eq. (1) and an error in the equation two lines below have been correcte

    Structure of poly(propyl ether imine) (PETIM) dendrimer from fully atomistic molecular Dynamics Simulation and by Small Angle X-ray scattering

    Get PDF
    We study the structure of carboxylic acid terminated neutral poly (propyl ether imine) (PETIM) dendrimer from generation 1 through 6 (G1-G6) in a good solvent (water) by fully atomistic molecular dynamics (MD) simulations. We determine as a function of generation such structural properties as: radius of gyration, shape tensor, asphericity, fractal dimension, monomer density distribution, and end-group distribution functions. The sizes obtained from the MD simulations have been validated by Small Angle X-Ray Scattering (SAXS) experiment on dendrimer of generation 2 to 4 (G2-G4). A good agreement between the experimental and theoretical value of radius of gyration has been observed. We find a linear increase in radius of gyration with the generation. In contrast, Rg scales as ~ N^x with the number of monomers. We find two distinct exponents depending on the generations: x = 0.47 for G1-G3 and x = 0.28 for G3-G6 which reveals their non-space filling nature. In comparison with the amine terminated PAMAM dendrimer, we find Rg of G-th generation PETIM dendrimer is nearly equal to that of (G+1)-th generation of PAMAM dendrimer as observed by Maiti et. al. [Macromolecules,38, 979 2005]. We find substantial back folding of the outer sub generations into the interior of the dendrimer. Due to their highly flexible nature of the repeating branch units, the shape of the PETIM dendrimer deviates significantly from the spherical shape and the molecules become more and more spherical as the generation increases. The interior of the dendrimer is quite open with internal cavities available for accommodating guest molecules suggesting using PETIM dendrimer for guest-host applications. We also give a quantitative measure of the number of water molecules present inside the dendrimer.Comment: 33 page

    Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations

    Get PDF
    To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism
    corecore