89 research outputs found

    New Coherence and RIP Analysis for Weak Orthogonal Matching Pursuit

    Full text link
    In this paper we define a new coherence index, named the global 2-coherence, of a given dictionary and study its relationship with the traditional mutual coherence and the restricted isometry constant. By exploring this relationship, we obtain more general results on sparse signal reconstruction using greedy algorithms in the compressive sensing (CS) framework. In particular, we obtain an improved bound over the best known results on the restricted isometry constant for successful recovery of sparse signals using orthogonal matching pursuit (OMP).Comment: arXiv admin note: substantial text overlap with arXiv:1307.194

    Compressive Nonparametric Graphical Model Selection For Time Series

    Full text link
    We propose a method for inferring the conditional indepen- dence graph (CIG) of a high-dimensional discrete-time Gaus- sian vector random process from finite-length observations. Our approach does not rely on a parametric model (such as, e.g., an autoregressive model) for the vector random process; rather, it only assumes certain spectral smoothness proper- ties. The proposed inference scheme is compressive in that it works for sample sizes that are (much) smaller than the number of scalar process components. We provide analytical conditions for our method to correctly identify the CIG with high probability.Comment: to appear in Proc. IEEE ICASSP 201

    Joint Sparsity with Different Measurement Matrices

    Full text link
    We consider a generalization of the multiple measurement vector (MMV) problem, where the measurement matrices are allowed to differ across measurements. This problem arises naturally when multiple measurements are taken over time, e.g., and the measurement modality (matrix) is time-varying. We derive probabilistic recovery guarantees showing that---under certain (mild) conditions on the measurement matrices---l2/l1-norm minimization and a variant of orthogonal matching pursuit fail with a probability that decays exponentially in the number of measurements. This allows us to conclude that, perhaps surprisingly, recovery performance does not suffer from the individual measurements being taken through different measurement matrices. What is more, recovery performance typically benefits (significantly) from diversity in the measurement matrices; we specify conditions under which such improvements are obtained. These results continue to hold when the measurements are subject to (bounded) noise.Comment: Allerton 201

    Multichannel sparse recovery of complex-valued signals using Huber's criterion

    Full text link
    In this paper, we generalize Huber's criterion to multichannel sparse recovery problem of complex-valued measurements where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. This requires careful characterization of robust complex-valued loss functions as well as Huber's criterion function for the multivariate sparse regression problem. We devise a greedy algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Unlike the conventional SNIHT method, our algorithm, referred to as HUB-SNIHT, is robust under heavy-tailed non-Gaussian noise conditions, yet has a negligible performance loss compared to SNIHT under Gaussian noise. Usefulness of the method is illustrated in source localization application with sensor arrays.Comment: To appear in CoSeRa'15 (Pisa, Italy, June 16-19, 2015). arXiv admin note: text overlap with arXiv:1502.0244

    Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

    Full text link
    Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.Comment: To appear in the IEEE Trans. Signal Processing. This is a revised, shortened version of version
    • …
    corecore