13,767 research outputs found

    A nanoindentation investigation of local strain rate sensitivity in dual-phase Ti alloys

    Get PDF
    Using nanoindentation we have investigated the local strain rate sensitivity in dual-phase Ti alloys, Ti-6Al-2Sn-4Zr-xMo (x=2 and 6), as strain rate sensitivity could be a potential factor causing cold dwell fatigue. Electron backscatter diffraction (EBSD) was used to select hard and soft grain orientations within each of the alloys. Nanoindentation based tests using the continuous stiffness measurement (CSM) method were performed with variable strain rates, on the order of 10−1 to 10−3s−1. Local strain rate sensitivity is determined using a power law linking equivalent flow stress and equivalent plastic strain rate. Analysis of residual impressions using both a scanning electron microscope (SEM) and a focused ion beam (FIB) reveals local deformation around the indents and shows that nanoindentation tested structures containing both α and β phases within individual colonies. This indicates that the indentation results are derived from averaged α/β properties. The results show that a trend of local rate sensitivity in Ti6242 and Ti6246 is strikingly different; as similar rate sensitivities are found in Ti6246 regardless of grain orientation, whilst a grain orientation dependence is observed in Ti6242. These findings are important for understanding dwell fatigue deformation modes, and the methodology demonstrated can be used for screening new alloy designs and microstructures

    Multiscale Poromechanics of Wet Cement Paste

    Get PDF
    Capillary effects such as imbibition-drying cycles impact the mechanics of granular systems over time. A multiscale poromechanics framework was applied to cement paste, that is the most common building material, experiencing broad humidity variations over the lifetime of infrastructure. First, the liquid density distribution at intermediate to high relative humidities is obtained using a lattice gas density functional method together with a realistic nano-granular model of cement hydrates. The calculated adsorption/desorption isotherms and pore size distributions are discussed and compare well to nitrogen and water experiments. The standard method for pore size distribution determination from desorption data is evaluated. Then, the integration of the Korteweg liquid stress field around each cement hydrate particle provided the capillary forces at the nanoscale. The cement mesoscale structure was relaxed under the action of the capillary forces. Local irreversible deformations of the cement nano-grains assembly were identified due to liquid-solid interactions. The spatial correlations of the nonaffine displacements extend to a few tens of nm. Finally, the Love-Weber method provided the homogenized liquid stress at the micronscale. The homogenization length coincided with the spatial correlation length nonaffine displacements. Our results on the solid response to capillary stress field suggest that the micronscale texture is not affected by mild drying, while local irreversible deformations still occur. These results pave the way towards understanding capillary phenomena induced stresses in heterogeneous porous media ranging from construction materials, hydrogels to living systems.Comment: 6 figures in main text, 4 figures in the SI appendi

    Deformation of grain boundaries in polar ice

    Full text link
    The ice microstructure (grain boundaries) is a key feature used to study ice evolution and to investigate past climatic changes. We studied a deep ice core, in Dome Concordia, Antarctica, which records past mechanical deformations. We measured a "texture tensor" which characterizes the pattern geometry and reveals local heterogeneities of deformation along the core. These results question key assumptions of the current models used for dating

    Ellipticity loss analysis for tangent moduli deduced from a large strain elastic–plastic self-consistent model

    Get PDF
    In order to investigate the impact of microstructures and deformation mechanisms on the ductility of materials, the criterion first proposed by Rice is applied to elastic–plastic tangent moduli derived from a large strain micromechanical model combined with a self-consistent scale-transition technique. This approach takes into account several microstructural aspects for polycrystalline aggregates: initial and induced textures, dislocation densities as well as softening mechanisms such that the behavior during complex loading paths can be accurately described. In order to significantly reduce the computing time, a new method drawn from viscoplastic formulations is introduced so that the slip system activity can be efficiently determined. The different aspects of the single crystal hardening (self and latent hardening, dislocation storage and annihilation, mean free path, etc.) are taken into account both by the introduction of dislocation densities per slip system as internal variables and the corresponding evolution equations. Comparisons are made with experimental results for single and dual-phase steels involving linear and complex loading paths. Rice’s criterion is then coupled and applied to this constitutive model in order to determine the ellipticity loss of the polycrystalline tangent modulus. This criterion, which does not need any additional “fitting” parameter, is used to build Ellipticity Limit Diagrams (ELDs).ArcelorMittal Researc

    Effect of impurities on morphology and growth mode of (111) and (001) epitaxial-like ScN films

    Full text link
    ScN material is an emerging semiconductor with an indirect bandgap. It has attracted attention for its thermoelectric properties, use as seed layers, and for alloys for piezoelectric application. ScN or other transition metal nitride semiconductors used for their interesting electrical properties are sensitive to contaminants, such as oxygen or fluorine. In this present article, the influence of depositions conditions on the amount of oxygen contaminants incorporated in ScN films were investigated and their effects on the electrical properties (electrical resistivity and Seebeck coefficient) were studied. The epitaxial-like films of thickness 125 +-5 nm to 155 +-5 nm were deposited by D.C.-magnetron sputtering on c-plane Al2O3, MgO(111) and r-plane Al2O3 at a substrate temperature ranging from 700 to 950 degree C. The amount of oxygen contaminants presents in the film, dissolved into ScN or as an oxide, was related to the adatom mobility during growth, which is affected by the deposition temperature and the presence of twin domain growth. The lowest values of electrical resistivity of 50 micro-ohm cm were obtained on ScN(111)/MgO(111) and on ScN(001)/r-plane Al2O3 grown at 950 degree C with no twin domains and the lowest amount of oxygen contaminant. At the best, the films exhibited an electrical resistivity of 50 micro-ohm cm with Seebeck coefficient values maintained at -40 microV K-1, thus a power factor estimated at 3.2 10-3 W m-1 K-2 (at room temperature)
    corecore