133,369 research outputs found

    On multi-objective optimization of planetary exploration rovers applied to ExoMars-type rovers

    Get PDF
    ExoMars is the first robotic mission of the Aurora program of the European Space Agency (EAS). Surface mobility (as provided by ExoMarks rover) is one of the enabling technologies necessary for future exploration missions. This work uses previouly developed mathematical models to represent an ExoMars rover operation in soft/rocky terrain. The models are used in an optimization loop to evaluate multiple objective functions affected by the change in geometrical design parameters. Several objective funktions can be used in our optimization environment powered by MOPS (Multi-Objective Parameter Synthesis). Two environments are used to simulate the rover in stability sensitive conditions and power and sinkage sensitive conditions. Finally, an ExoMars-like configuration is proposed and consistent improvemnt directions are pointed out

    A Geometric Approach to Pairwise Bayesian Alignment of Functional Data Using Importance Sampling

    Full text link
    We present a Bayesian model for pairwise nonlinear registration of functional data. We use the Riemannian geometry of the space of warping functions to define appropriate prior distributions and sample from the posterior using importance sampling. A simple square-root transformation is used to simplify the geometry of the space of warping functions, which allows for computation of sample statistics, such as the mean and median, and a fast implementation of a kk-means clustering algorithm. These tools allow for efficient posterior inference, where multiple modes of the posterior distribution corresponding to multiple plausible alignments of the given functions are found. We also show pointwise 95%95\% credible intervals to assess the uncertainty of the alignment in different clusters. We validate this model using simulations and present multiple examples on real data from different application domains including biometrics and medicine

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio
    • …
    corecore