153 research outputs found

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Compact adaptive planar antenna arrays for robust satellite navigation systems

    Get PDF
    In den zurĂŒckliegenden zwei Jahrzehnten ist die AbhĂ€ngigkeit der Industriegesellschaft von satellitengestĂŒtzten Ortungssystemen, Navigationsdiensten und Zeitsignalen dramatisch gewachsen. Darauf aufbauende moderne Anwendungen reichen von hochgenauen OrtungsgerĂ€ten bis zu intelligenten Transportsystemen und von der Synchronisation mobiler Netzwerke zu Wetter- und Klimabeobachtung. Dies setzt neue höhere Standards in der Robustheit, Genauigkeit, VerfĂŒgbarkeit und VerlĂ€sslichkeit moderner NavigationsempfĂ€nger voraus. Möglich werden diese Verbesserungen aktuell mit der EinfĂŒhrung von Multiantennensystemen in den NavigationsgerĂ€ten. Jedoch wird die Nutzung dieses Ansatzes durch die grĂ¶ĂŸeren Abmessungen der Antennenarrays erschwert, weil standardmĂ€ĂŸig der Elementabstand zu einer halben FreiraumwellenlĂ€nge gewĂ€hlt wird, was im L Band ca. 10 cm bedeutet. In dieser Arbeit werden kompakte Antennenarrays fĂŒr NavigationsempfĂ€nger mit geringerem Elementabstand vorgeschlagen, die eine Miniaturisierung der EmpfĂ€ngerabmessungen erlauben. Diese kompakten Arrays werden in ihrer LeistungsfĂ€higkeit jedoch durch die negativen Effekte der Verkopplung zwischen den Einzelelementen beeintrĂ€chtigt. FĂŒr die Beurteilung der EmpfĂ€ngerleistungsfĂ€higkeit existieren verschiedene QualitĂ€tsparameter fĂŒr Analyse und Entwurf der planaren Arrays. Damit werden z. B. Diversity Freiheitsgrade, QualitĂ€t der RichtungsschĂ€tzung, Polarisationsreinheit und die wechselseitigen Kopplungen gemessen und eine Entwurfsumgebung wird vorgestellt, in der das optimale kompakte Antennenarray fĂŒr den jeweiligen Einsatzzweck ausgewĂ€hlt und konfiguriert werden kann. Dieser Prozess wird durch eine Analyse des Rauschens und seiner Korrelationseigenschaften fĂŒr den gesamten EmpfĂ€nger begleitet. DarĂŒber hinaus wird ein analytisches Modell des effektiven carrier-to-interference-plus-noise ratio abgeleitet, um die LeistungsfĂ€higkeit der NavigationsempfĂ€nger in Szenarien mit Störsignalen zu untersuchen. Schließlich werden diese Betrachtungen durch den Aufbau eines kompletten SatellitennavigationsempfĂ€ngers ergĂ€nzt, um mit ihm den Nachweis der FunktionsfĂ€higkeit und der stabilen Funktion des entworfenen Systems mit kompaktem Array unter Störereinfluss bei Laborbedingungen und in den reale Außeneinsatz zu erbringen.Over the past two decades, humankind's reliance on global navigation satellite systems for precise positioning, navigation and timing services has grown remarkably. Such advanced applications vary from highly accurate surveying to intelligent transport systems, and from mobile network timing synchronization to weather and climate monitoring. This envisages new and higher standards of robustness, accuracy, coverage and integrity in modern navigation receivers. Recently, this has been accomplished with the incorporation of the multi-element navigation antenna receiver. However, the industrialization of this approach is limited due to the large antenna array size, hindered by the inter-element separation of half of the free-space wavelength, i.e. ≈ 10 cm at L band 1-2 GHz. In this thesis, compact navigation antenna arrays with smaller inter-element separations are proposed for the miniaturization of the overall size. However, these arrays become afflicted with the adverse effects of mutual coupling. Therefore, various figures-of-merit for the analysis and design of a compact planar navigation antenna array, such as performance diversity degrees-of-freedom, directional finding capabilities, and polarization purity, including mutual coupling effects, have been presented. This provides a general framework for the selection and configuration of the optimum compact navigation antenna array. In order to mitigate the mutual coupling, integration of the decoupling and matching network into customized compact navigation antenna array designs is performed. This is fostered by the correlated noise characterization of the complete receiver. Furthermore, an analytical model of the equivalent carrier-to-interference-plus-noise ratio is derived to investigate the navigation performance in interference scenarios. In the end, this is complemented by the implementation of the complete navigation receiver for verification and robustness validation of the derived compact antenna array concepts in indoor and outdoor interference scenarios

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed

    Electronics and Its Worldwide Research

    Get PDF
    The contributions of researchers at a global level in the journal Electronics in the period 2012–2020 are analyzed. The objective of this work is to establish a global vision of the issues published in the Electronic magazine and their importance, advances and developments that have been particularly relevant for subsequent research. The magazine has 15 thematic sections and a general one, with the programming of 385 special issues for 2020–2021. Using the Scopus database and bibliometric techniques, 2310 documents are obtained and distributed in 14 thematic communities. The communities that contribute to the greatest number of works are Power Electronics (20.13%), Embedded Computer Systems (13.59%) and Internet of Things and Machine Learning Systems (8.11%). A study of the publications by authors, affiliations, countries as well as the H index was undertaken. The 7561 authors analyzed are distributed in 87 countries, with China being the country of the majority (2407 authors), followed by South Korea (763 authors). The H-index of most authors (75.89%) ranges from 0 to 9, where the authors with the highest H-Index are from the United States, Denmark, Italy and India. The main publication format is the article (92.16%) and the review (5.84%). The magazine publishes topics in continuous development that will be further investigated and published in the near future in fields as varied as the transport sector, energy systems, the development of new broadband semiconductors, new modulation and control techniques, and more

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years
    • 

    corecore