4 research outputs found

    Design methodology for reliable and energy efficient self-tuned on-chip voltage regulators

    Get PDF
    The energy-efficiency needs in computing systems, ranging from high performance processors to low-power devices is steadily on the rise, resulting in increasing popularity of on-chip voltage regulators (VR). The high-frequency and high bandwidth on-chip voltage regulators such as Inductive voltage regulators (IVR) and Digital Low Dropout regulators (DLDO) significantly enhance the energy-efficiency of a SoC by reducing supply noise and enabling faster voltage transitions. However, IVRs and DLDOs need to cope with the higher variability that exists in the deep nanometer digital nodes since they are fabricated on the same die as the digital core affecting performance of both the VR and digital core. Moreover, in most modern SoCs where multiple power domains are preferred, each VR needs to be designed and optimized for a target load demand which significantly increases the design time and time to market for VR assisted SoCs. This thesis investigates a performance-based auto-tuning algorithm utilizing performance of digital core to tune VRs against variations and improve performance of both VR and the core. We further propose a fully synthesizable VR architecture and an auto-generation tool flow that can be used to design and optimize a VR for given target specifications and auto-generate a GDS layout. This would reduce the design time drastically. And finally, a flexible precision IVR architecture is also explored to further improve transient performance and tolerance to process variations. The proposed IVR and DLDO designs with an AES core and auto-tuning circuits are prototyped in two testchips in 130nm CMOS process and one test chip in 65nm CMOS process. The measurements demonstrate improved performance of IVR and AES core due to performance-based auto-tuning. Moreover, the synthesizable architectures of IVR and DLDO implemented using auto-generation tool flow showed competitive performance with state of art full custom designs with orders of magnitude reduction in design time. Additional improvement in transient performance of IVR is also observed due to the flexible precision feedback loop design.Ph.D

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit
    corecore